Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
15 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
How the South Fights Fire with Fire, and What the West Can Learn
Most years Georgia intentionally burns around a million acres of forest. That’s about 30 times the size of California’s prescribed burns. Florida performs prescribed burns over twice that much land. That’s according to data from the national interagency fire center and compiled by the non-profit Climate Central.
Located in News & Events
File Pedoecological Modeling to Guide Forest Restoration using Ecological Site Descriptions
the u.s. department of agriculture (usda)-natural resources conservation service (nrcs) uses an ecological site description (esd) framework to help incorporate interactions between local soil, climate, flora, fauna, and humans into schema for land management decision-making. we demonstrate esd and digital soil mapping tools to (i) estimate potential o horizon carbon (c) stock accumulation from restoring alternative ecological states in high-elevation forests of the central appalachian Mountains in west Virginia (wV), usa, and (ii) map areas in alternative ecological states that can be targeted for restoration. this region was extensively disturbed by clear-cut harvests and related fires during the 1880s through 1930s. we combined spodic soil property maps, recently linked to historic red spruce–eastern hemlock (Picea rubens–Tsuga canadensis) forest communities, with current forest inventories to provide guidance for restoration to a historic reference state. this allowed mapping of alternative hardwood states within areas of the spodic shale uplands conifer forest (scF) ecological site, which is mapped along the regional conifer-hardwood transition of the central appalachian Mountains. Plots examined in these areas suggest that many of the spruce-hemlock dominated stands in wV converted to a hardwood state by historic disturbance have lost at least 10 cm of o horizon thickness, and possibly much more. Based on this 10 cm estimate, we calculate that at least 3.74 to 6.62 tg of c were lost from areas above 880 m elevation in wV due to historic disturbance of o horizons, and that much of these stocks and related ecosystem functions could potentially be restored within 100 yr under focused management, but more practical scenarios would likely require closer to 200 yr.
Located in Resources / Climate Science Documents
File text/texmacs Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests
Wildfires play a key role in the boreal forest carbon cycle(1,2), and models suggest that accelerated burning will increase boreal C emissions in the coming century (3). However, these predictions may be compromised because brief observational records provide limited constraints to model initial conditions (4). We confronted this limitation by using palaeoenvironmental data to drive simulations of long-term C dynamics in the Alaskan bo- real forest. Results show that fire was the dominant control on C cycling over the past millennium, with changes in fire frequency accounting for 84% of C stock variability. A recent rise in fire frequency inferred from the palaeorecord5 led to simulated C losses of 1.4 kg C m?2(12% of ecosystem C stocks) from 1950 to 2006. In stark contrast, a small net C sink of 0.3 kg C m?2 occurred if the past fire regime was assumed to be similar to the modern regime, as is common in models of C dynamics. Although boreal fire regimes are heterogeneous, recent trends6 and future projections (7) point to increasing fire activity in response to climate warming throughout the biome. Thus, predictions (8) that terrestrial C sinks of northern high latitudes will mitigate rising atmospheric CO2 may be over-optimistic.
Located in Resources / Climate Science Documents
File Reform forest fire management: Agency incentives undermine policy effectiveness
Globally, wildfire size, severity, and frequency have been increasing, as have related fatalities and taxpayer- funded firefighting costs (1). In most accessible forests, wildfire response prioritizes suppression because fires are easier and cheaper to contain when small (2). In the United States, for example, 98% of wildfires are suppressed before reaching 120 ha in size (3). But the 2% of wildfires that escape containment often burn under extreme weather conditions in fuel-loaded forests and account for 97% of fire-fighting costs and total area burned (3). Changing climate and decades of fuel accumulation make efforts to suppress every fire dangerous, expensive, and ill advised (4).
Located in Resources / Climate Science Documents
File application/x-internet-signup Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains
Many of the largest wildfires in US history burned in recent decades, and climate change explains much of the increase in area burned. The frequency of extreme wildfire weather will increase with continued warming, but many uncertainties still exist about future fire regimes, including how the risk of large fires will persist as vegetation changes. Past fire-climate relationships provide an opportunity to constrain the related uncertainties, and reveal widespread burn- ing across large regions of western North America during past warm intervals. Whether such episodes also burned large portions of individual landscapes has been difficult to determine, however, because uncertainties with the ages of past fires and limited spatial resolution often prohibit specific estimates of past area burned. Accounting for these challenges in a subalpine landscape in Colorado, we estimated century-scale fire synchroneity across 12 lake- sediment charcoal records spanning the past 2,000 y. The percent- age of sites burned only deviated from the historic range of vari- ability during the Medieval Climate Anomaly (MCA) between 1,200 and 850 y B.P., when temperatures were similar to recent decades. Between 1,130 and 1,030 y B.P., 83% (median estimate) of our sites burned when temperatures increased ∼0.5 °C relative to the preceding centuries. Lake-based fire rotation during the MCA decreased to an estimated 120 y, representing a 260% higher rate of burning than during the period of dendroecological sampling (360 to −60 y B.P.). Increased burning, however, did not persist throughout the MCA. Burning declined abruptly before temperatures cooled, indicating possible fuel limitations to continued burning.
Located in Resources / Climate Science Documents
File ECMAScript program Don't Blame the Beetles
Bark beetles have devastated western forests, but that may not mean more severe fires.
Located in Resources / Climate Science Documents
File PDF document A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution Vol. 35
This paper reports on the development and validation of a new, global, burnt area product. Burnt areas are reported at a resolution of 1 km for seven fire years (2000 to 2007). A modified version of a Global Burnt Area (GBA) 2000 algorithm is used to compute global burnt area. The total area burnt each year (2000– 2007) is estimated to be between 3.5 million km2 and 4.5 million km2 . The total amount of vegetation burnt by cover type according to the Global Land Cover (GLC) 2000 product is reported. Validation was undertaken using 72 Landsat TM scenes was undertaken. Correlation statistics between estimated burnt areas are reported for major vegetation types. The accuracy of this new global data set depends on vegetation type.
Located in Resources / Climate Science Documents
File PDF document Coupling of Vegetation Growing Season Anomalies and Fire Activity with Hemispheric and Regional-Scale Climate Patterns in Central and East Siberia
An 18-yr time series of the fraction of absorbed photosynthetically active radiation (fAPAR) taken in by the green parts of vegetation data from the NOAA Advanced Very High Resolution Radiometer (AVHRR) instrument series was analyzed for interannual variations in the start, peak, end, and length of the season of vegetation photosynthetic activity in central and east Siberia. Variations in these indicators of seasonality can give important information on interactions between the biosphere and atmosphere. A second-order local moving window regression model called the “camelback method” was developed to determine the dates of phenological events at subcontinental scale. The algorithm was validated by comparing the estimated dates to phenological field observations. Using spatial correlations with temperature and precipitation data and climatic oscillation indices, two geographically distinct mechanisms in the system of climatic controls of the biosphere in Siberia are postulated: central Siberia is controlled by an “Arctic Oscillation–temperature mechanism,” while east Siberia is controlled by an “El Niño–precipitation mechanism.” While the analysis of data from 1982 to 1991 indicates a slight increase in the length of the growing season for some land-cover types due to an earlier beginning of the growing season, the overall trend from 1982 to 1999 is toward a slightly shorter season for some land-cover types caused by an earlier end of season. The Arctic Oscillation tended toward a more positive phase in the 1980s leading to enhanced high pressure system prevalence but toward a less positive phase in the 1990s. The results suggest that the two mechanisms also control the fire regimes in central and east Siberia. Several extreme fire years in central Siberia were associated with a highly positive Arctic Oscillation phase, while several years with high fire damage in east Siberia occurred in El Niño years. An analysis of remote sensing data of forest fire partially supports this hypothesis VOLUME 20
Located in Resources / Climate Science Documents
File PDF document Carbon loss from an unprecedented Arctic tundra wildfire
Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils1,2. Fire has been largely absent from most of this biome since the early Holocene epoch3, but its frequency and extent are increasing, probably in response to climate warming4. The effect of fires on the C balance of tundra landscapes, however, remains largely unknown. The Anaktuvuk River fire in 2007 burned 1,039 square kilometres of Alaska’s Arctic slope, making it the largest fire on record for the tundra biome and doubling the cumulative area burned since 1950 (ref. 5). Here we report that tundra ecosystems lost 2,016 6 435 g C m22 in the fire, an amount two orders of magnitude larger than annual net C exchange in undisturbed tundra6. Sixty per cent of this C loss was from soil organic matter, and radiocarbon dating of residual soil layers revealed that the maximum age of soil C lost was 50 years. Scaled to the entire burned area, the fire released approximately 2.1 teragrams of C to the atmosphere, an amount similar in magnitude to the annual net C sink for the entire Arctic tundra biome averaged over the last quarter of the twentieth century7. The mag- nitude of ecosystem C lost by fire, relative to both ecosystem and biome-scale fluxes, demonstrates that a climate-driven increase in tundra fire disturbance may represent a positive feedback, potentially offsetting Arctic greening 8 and influencing the net C balance of the tundra biome.
Located in Resources / Climate Science Documents
File PDF document CLIMATE’S SMOKY SPECTRE
With their focus on greenhouse gases, atmospheric scientists have largely overlooked lowly soot particles. But black carbon is now a hot topic among researchers and politicians.
Located in Resources / Climate Science Documents