Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
29 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Climate Change, Aboveground-Belowground Interactions, and Species’ Range Shifts
Changes in climate, land use, fire incidence, and ecological connections all may contribute to current species’ range shifts. Species shift range individually, and not all species shift range at the same time and rate. This variation causes community reorganization in both the old and new ranges. In terrestrial ecosystems, range shifts alter aboveground-belowground interactions, influencing species abundance, community composition, ecosystem processes and services, and feedbacks within communities and ecosystems. Thus, range shifts may result in no-analog communities where foundation species and community genetics play unprecedented roles, possibly leading to novel ecosystems. Long-distance dispersal can enhance the disruption of aboveground-belowground interactions of plants, herbivores, pathogens, symbiotic mutualists, and decomposer organisms. These effects are most likely stronger for latitudinal than for altitudinal range shifts. Disrupted aboveground-belowground interactions may have influenced historical postglacial range shifts as well. Assisted migration without considering aboveground-belowground interactions could enhance risks of such range shift–induced invasions.
Located in Resources / Climate Science Documents
File PDF document Beyond Reserves and Corridors: Policy Solutions to Facilitate the Movement of Plants and Animals in a Changing Climate
As the Earth’s climate changes, many species will have to move across human-dominated landscapes to track suitable climates and changing ecosystems. Given the magnitude of projected future climate change, expanding and connecting reserve networks—two of the most commonly recommended adaptation strategies for protecting biodiversity in a changing climate—will be necessary but insufficient for preventing climate-induced extinctions. In the present article, we explore additional policy options that could be implemented to facilitate species movements in a changing climate. We discuss both existing and new policies that have the potential to increase landscape permeability, protect species on the move, and physically move species to address climate change. Keywords: climate change, adaptation, species movement, policy
Located in Resources / Climate Science Documents
File PDF document Bird population trends are linearly affected by climate change along species thermal ranges
Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.
Located in Resources / Climate Science Documents
File PDF document Changes in forest productivity across Alaska consistent with biome shift
Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal–tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline.
Located in Resources / Climate Science Documents
File PDF document Assessing potential climate change effects on vegetation using a linked model approach
We developed a process that links the mechanistic power of dynamic global vegetation models with the detailed vegetation dynamics of state-and-transition models to project local vegetation shifts driven by projected climate change. We applied our approach to central Oregon (USA) ecosystems using three climate change scenarios to assess potential future changes in species composition and community structure. Our results suggest that: (1) legacy effects incorporated in state-and-transition models realistically dampen climate change effects on vegetation; (2) species-specific response to fire built into state-and- transition models can result in increased resistance to climate change, as was the case for ponderosa pine (Pinus ponderosa) forests, or increased sensitivity to climate change, as was the case for some shrublands and grasslands in the study area; and (3) vegetation could remain relatively stable in the short term, then shift rapidly as a consequence of increased disturbance such as wildfire and altered environmental conditions. Managers and other land stewards can use results from our linked models to better anticipate potential climate-induced shifts in local vegetation and resulting effects on wildlife habitat.
Located in Resources / Climate Science Documents
File PDF document BOTANY AND A CHANGING WORLD: INTRODUCTION TO THE SPECIAL ISSUE ON GLOBAL BIOLOGICAL CHANGE
The impacts of global change have heightened the need to understand how organisms respond to and influence these changes. Can we forecast how change at the global scale may lead to biological change? Can we identify systems, processes, and organisms that are most vulnerable to global changes? Can we use this understanding to enhance resilience to global changes? This special issue on global biological change emphasizes the integration of botanical information at different biological levels to gain perspective on the direct and indirect effects of global change. Contributions span a range of spatial scales and include both ecological and evolutionary timescales and highlight work across levels of organization, including cellular and physiological processes, individuals, populations, and ecosystems. Integrative botanical approaches to global change are critical for the eco- logical and evolutionary insights they provide and for the implications these studies have for species conservation and ecosys- tem management. Key words: community dynamics; flowering phenology; functional traits; global biological change; invasive species; land-use patterns; plant–microbial interactions; species interactions.
Located in Resources / Climate Science Documents
File PDF document Comment: Don’t judge species on their origins
SUMMARY: Conservationists should assess organisms on environmental impact rather than on whether they are natives, argue Mark Davis and 18 other ecologists. FROM THE TEXT: Nativeness is not a sign of evolutionary fitness or of a species having positive effects.The insect currently suspected to be killing more trees than any other in North Americais the native mountain pine beetle Dendroctonus ponderosae. Classifying biota according to their adherence to cultural standards of belonging, citizenship, fair play and morality does not advance our understanding of ecology. Over the past few decades, this perspective has led many conservation and restoration efforts down paths that make little ecological or economic sense
Located in Resources / Climate Science Documents
File PDF document Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally
It is possible that anthropogenic climate change will drive the Earth system into a qualitatively different state1. Although different types of uncertainty limit our capacity to assess this risk 2, Earth system scientists are particularly concerned about tipping elements, large-scale components of the Earth system that can be switched into qualitatively different states by small perturbations. Despite growing evidence that tipping elements exist in the climate system1,3, whether large-scale vegetation systems can tip into alternative states is poorly understood4. Here we show that tropical grassland, savanna and forest ecosystems, areas large enough to have powerful impacts on the Earth system, are likely to shift to alternative states. Specifically, we show that increasing atmospheric CO2 concentration will force transitions to vegetation states characterized by higher biomass and/or woody-plant dominance. The timing of these critical transitions varies as a result of between-site variance in the rate of temperature increase, as well as a dependence on stochastic variation in fire severity and rainfall. We further show that the locations of bistable vegetation zones (zones where alternative vegetation states can exist) will shift as climate changes. We conclude that even though large-scale directional regime shifts in terrestrial ecosystems are likely, asynchrony in the timing of these shifts may serve to dampen, but not nullify, the shock that these changes may represent to the Earth system.
Located in Resources / Climate Science Documents
File PDF document Ecological and Evolutionary Responses to Recent Climate Change
Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups. These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research. Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change. Tropical coral reefs and amphibians have been most negatively affected. Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming. Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins. Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level.
Located in Resources / Climate Science Documents
File A globally coherent fingerprint of climate change impacts across natural systems
Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a ‘systematic trend’. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Located in Resources / Climate Science Documents