Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
29 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
The Central Appalachia Prosperity Project is part of the Presidential Climate Action Project to develop policy recommendations on climate and energy security, with a focus on what the next President of the United States could accomplish using his or her executive authority. The Central Appalachian Project draws on the input of America's most innovative experts to produce policy and program recommendations that are sufficiently bold to expedite the region's transition to a clean energy economy. An important component of these recommendations has been better coordination of the efforts being made by all levels of government - federal, regional, state and local.
Located in Cultural Resources / Socioeconomics / Socio-economic Projects
A tool developed to provide information necessary in protecting the region’s unique natural resources, promote development and planning that accommodates healthy growth, preserve the heritage and culture that defines communities, and strengthen public health to improve local economies. The Index was developed by University of North Carolina-Asheville National Environmental Modeling and Analysis Center from the result of a partnership between the US Forest Service, the NC Mountain Resources Commission, the Blue Ridge National Heritage Area, the Asheville Board of Realtors and Duke Energy. The current iteration of the index contains over 160 different data metrics for each of the western 27 counties in NC. The information is classified into natural, built, human and economic sectors. Data and maps can be downloaded, spatially examined, and compared with state and national averages. A map viewer function allows users to customize their own maps for specific reports, grant applications, and general education and various presentations.
Located in Cultural Resources / Socioeconomics / Socio-economic Tools
File PDF document WWF: China Ecological Footprint Report 2012 Consumption, Production and Sustainable Development
From the Executive Summary p. 3 : "We have only one planet and the time has come to transform our present lifestyle and consumption patterns in order to halt the degradation of the Earth’s natural capital, and to secure ecosystem services as the foundation for economic and social development."
Located in Resources / Climate Science Documents
File PDF document Could climate change capitalism?
Economist Nicholas Stern’s latest book is a rare and masterly synthesis of climate-change science and economics. His ‘global deal’ could change capitalism for the better, says Robert Costanza.
Located in Resources / Climate Science Documents
File PDF document Extreme Weather Events in Europe: preparing for climate change adaptation
This study arises from the concern that changes in weather patterns will be one of the principal effects of climate change and with these will come extreme weather. This is of considerable consequence in Europe as it impacts on the vulnerability of communities across the continent and exposes them to environmental risks. It is now widely recognised that failures in international efforts to agree on the action necessary to limit global climate change mean that adaptation to its consequences is necessary and unavoidable (Solomon et al., 2007). The changes anticipated in the occurrence and character of extreme weather events are, in many cases, the dominant factor in designing adaptation measures. Policy communities within the EU have begun to consider appropriate responses to these changes and an EU adaptation strategy is under active development and implementation. There are also sectoral EU initiatives, for example on water shortages and heat waves, and, at a regional level, on planning for floods and storms. The basic and unavoidable challenge for decision makers is to find workable and cost-effective solutions when faced with increased probabilities of very costly adverse impacts. Information about the nature and scale of these changes is essential to guide decisions on appropriate solutions. Agenda-setting for climate change and adaptation has to take place in a social or/and political setting. Scientific information about temporal changes in the probability distributions of extreme weather events over Europe, the main focus of this report, is important for informing the social and political processes that it is hoped will lead to adequate climate-change adaptation measures in Europe. This report is focused on providing a working-level assessment of the current state of the quantitative understanding of relevant extreme weather phenomena and their impacts.
Located in Resources / Climate Science Documents
File PDF document El Nino in a changing climate
El Nino events, characterized by anomalous warming in the eastern equatorial Pacific Ocean, have global climatic teleconnections and are the most dominant feature of cyclic climate variability on subdecadal timescales. Understanding changes in the frequency or characteristics of El Nino events in a changing climate is therefore of broad scientific and socioeconomic interest. Recent studies (1–5) show that the canonical El Nino has become less frequent and that a different kind of El Nino has become more common during the late twentieth century, in which warm sea surface temperatures (SSTs) in the central Pacific are flanked on the east and west by cooler SSTs. This type of El Nino, termed the central Pacific El Nino (CP-El Nino; also termed the dateline El Nino (2), El Nino Modoki (3) or a warm pool El Nino (5), differs from the canonical eastern Pacific El Nino (EP-El Nino) in both the location of maximum SST anomalies and tropical–midlatitude teleconnections. Here we show changes in the ratio of CP-El Nino to EP-El Nino under projected global EQ warming scenarios from the Coupled Model Intercomparison Project phase 3 multi-model data set (6). Using calculations based 10o S on historical El Nino indices, we find that projections of anthropogenic climate change are associated with an increased frequency of the CP-El Nino compared to the EP-El Nino. When restricted to the six climate models with the best representation of the twentieth-century ratio of CP-El Nino to EP-El Nino, the occurrence ratio of CP-El Nino/EP-El Nino is projected to increase as 10o N much as five times under global warming. The change is related to a flattening of the thermocline in the equatorial Pacific.
Located in Resources / Climate Science Documents
File PDF document Economic growth and the human lot
1st paragraph: In 1974, Richard A. Easterlin, a coauthor of the work by Easterlin et al. (1) in PNAS, published a seminal article (2) that has generated a huge literature. It sought to explain why the happiness score in the United States (and elsewhere) had stayed roughly constant, whereas income per capita had trended up. This evidence has come to be known as the Easterlin Paradox. His explanation was that economic growth has a positive effect on happiness with other things being equal; however, it also raises aspirations, and aspirations have a negative effect. Aspirations are determined by society, particularly reference group income. The combination of these two effects gives rise to a Hedonic Treadmill.
Located in Resources / Climate Science Documents
File PDF document Adapting to flood risk under climate change
Flooding is the most common natural hazard and third most damaging globally after storms and earthquakes. Anthropogenic climate change is expected to increase flood risk through more frequent heavy precipitation, increased catchment wetness and sea level rise. This paper reviews steps being taken by actors at international, national, regional and community levels to adapt to flood risk from tidal, fluvial, surface and groundwater sources. We refer to existing inventories, national and sectoral adaptation plans, flood inqui- ries, building and planning codes, city plans, research literature and international policy reviews. We dis- tinguish between the enabling environment for adaptation and specific implementing measures to manage flood risk. Enabling includes routine monitoring, flood forecasting, data exchange, institutional reform, bridging organizations, contingency planning for disasters, insurance and legal incentives to reduce vulner- ability. All such activities are ‘low regret’ in that they yield benefits regardless of the climate scenario but are not cost-free. Implementing includes climate safety factors for new build, upgrading resistance and resilience of existing infrastructure, modifying operating rules, development control, flood forecasting, temporary and permanent retreat from hazardous areas, periodic review and adaptive management. We identify evidence of both types of adaptation following the catastrophic 2010/11 flooding in Victoria, Australia. However, signif- icant challenges remain for managing transboundary flood risk (at all scales), protecting existing property at risk from flooding, and ensuring equitable outcomes in terms of risk reduction for all. Adaptive management also raises questions about the wider preparedness of society to systematically monitor and respond to evol- ving flood risks and vulnerabilities. Keywords adaptation, climate change, flood, natural hazards, risk, Victoria, vulnerability
Located in Resources / Climate Science Documents
File PDF document Accounting for Environmental Assets
A country can cut down its forests, erode its soils, pollute its aquifers and hunt its wildlife and fisheries to extinction, but its measured income is not affected as these assets disappear. Impoverishment is taken for progress
Located in Resources / Climate Science Documents
File PDF document Amazon Basin climate under global warming: the role of the sea surface temperature
The Hadley Centre coupled climate–carbon cycle model (HadCM3LC) predicts loss of the Amazon rainforest in response to future anthropogenic greenhouse gas emissions. In this study, the atmospheric component of HadCM3LC is used to assess the role of simulated changes in midtwenty-first century sea surface temperature (SST) in Amazon Basin climate change. When the full HadCM3LC SST anomalies (SSTAs) are used, the atmosphere model reproduces the Amazon Basin climate change exhibited by HadCM3LC, including much of the reduction in Amazon Basin rainfall. This rainfall change is shown to be the combined effect of SSTAs in both thetropical Atlantic and the Pacific, with roughly equal contributions from each basin. The greatest rainfall reduction occurs from May to October, outside of the mature South American monsoon (SAM) season. This dry season response is the combined effect of a more rapid warming of the tropical North Atlantic relative to the south, and warm SSTAs in the tropical east Pacific. Conversely, a weak enhancement of mature SAM season rainfall in response to Atlantic SST change is suppressed by the atmospheric response to Pacific SST. This net wet season response is sufficient to prevent dry season soil moisture deficits from being recharged through the SAM season, leading to a perennial soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary productivity (NPP). A further 23% NPP reduction occurs in response to a 3.58C warmer air temperature associated with a global mean SST warming.
Located in Resources / Climate Science Documents