Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon

Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon

bserved increases in the mineralization rate of labile organic carbon (LOC) in the presence of black carbon (BC) have led to speculation that corresponding decreases in non-pyrogenic (i.e. non- BC) soil organic carbon (npSOC) could significantly reduce or negate the C sequestration benefit of BC in soils. Here we show that the potential effect of an increased LOC decomposition rate on long-term npSOC stocks is negligible, even when using assump- tions that would favour large losses, potentially causing no more than 3–4 % loss of npSOC over 100 years if 50 % of above-ground crop residues were converted to BC annually. Conversely, if the BC- stimulated enhanced stabilization of npSOC that has been observed in laboratory trials is extrapolated to the long-term, it would greatly increase soil carbon stocks by 30–60 %. Annual additions of BC derived from crop residues would increase total SOC (including both BC and npSOC) by an amount five times greater than the potential increase from enhanced stabilization and an order of magnitude greater than losses of npSOC caused by annual removals of biomass to provide BC feedstock. Keywords Black carbon 􏰓 Soil organic carbon 􏰓 Terrestrial carbon cycle 􏰓 Fire 􏰓 Biochar

Credits: Biogeochemistry (2012) 111:83–95 DOI 10.1007/s10533-012-9764-6

Fair Use OK

DOWNLOAD FILE — PDF document, 423 kB (434,116 bytes)