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Climate change mitigation acts by reducing greenhouse gas emis-
sions, and thus curbing, or even reversing, the increase in their
atmospheric concentration. This reduces the associated anthropo-
genic radiative forcing, and hence the size of the warming. Because
of the inertia and internal variability affecting the climate system
and the global carbon cycle, it is unlikely that a reduction in warm-
ing would be immediately discernible. Here we use 21st century
simulations from the latest ensemble of Earth System Model
experiments to investigate and quantify when mitigation becomes
clearly discernible. We use one of the scenarios as a reference for a
strong mitigation strategy, Representative Concentration Pathway
(RCP) 2.6 and compare its outcome with either RCP4.5 or RCP8.5,
both of which are less severe mitigation pathways. We analyze
global mean atmospheric CO2, and changes in annually and season-
ally averaged surface temperature at global and regional scales. For
global mean surface temperature, the median detection time of
mitigation is about 25–30 y after RCP2.6 emissions depart from
the higher emission trajectories. This translates into detection of
a mitigation signal by 2035 or 2045, depending on whether the
comparison is with RCP8.5 or RCP4.5, respectively. The detection
of climate benefits of emission mitigation occurs later at regional
scales, with a median detection time between 30 and 45 y after
emission paths separate. Requiring a 95% confidence level induces
a delay of several decades, bringing detection time toward the end
of the 21st century.

regional climate change | climate variability | signal detection

The Fifth Assessment Report of the Intergovernmental Panel
on Climate Change states, in its summary for policy makers,

that “Warming of the climate system is unequivocal” and that “It
is extremely likely that human influence has been the dominant
cause of the observed warming since the mid-20th century” (1).
To drive simulations of future climate, phase 5 of the Coupled
Model Intercomparison Project (CMIP5) (2) prescribed a new
set of four scenarios, the Representative Concentration Pathways
(RCPs), describing future emissions of major greenhouse gases
and aerosol precursors (3, 4). These four RCPs span the range
of radiative forcing found in the existing integrated assessment
model literature and lead to global radiative forcing levels of
about 2.6, 4.5, 6.0, and 8.5 watts per square meter (Wm−2) by the
end of the 21st century. Starting from present-day (year 2005)
concentrations, the scenarios diverge, three of them within the
next two decades. By 2100, it is estimated that CO2 emissions will
range from 29 petagrams of carbon per year (PgCyr-1) for RCP8.5
to −0.5 PgCyr-1 for RCP2.6 (5) (Fig. 1).
RCP2.6 assumes implementation of strong climate mitigation

policies, aiming to limit global warming to less than 2 °C relative
to the estimated preindustrial temperature. Compared with less
stringent mitigation scenarios, such as the two medium stabili-
zation scenarios (RCP4.5 and RCP6.0) or the much higher un-
mitigated emission scenario (RCP8.5), the benefits in terms of
avoided climate change would be significant. By 2100, models
simulate global surface warming of around 2 °C above preindustrial
level under RCP2.6 and show warming of about 5 °C under RCP8.5

(6, 7). These benefits would be achieved only with full partici-
pation of all countries in a stringent emission reduction program,
substantial changes in energy use, and intensive use of carbon
capture and storage and biofuels, with the estimated cost of
abating greenhouse gas emissions reaching 1.7% of the global
gross domestic product by 2050 (8).
However, the long lifetime of atmospheric CO2, combined

with the large inertia of the climate system due to the slow
mixing of heat in the ocean, means that the near-surface tem-
perature warming rates will not immediately decline even if
greenhouse gas emissions drop rapidly, as in RCP2.6. Further-
more, internal modes of variability on a range of space and time
scales (from interannual to multidecadal) could hamper early
detection of the underlying climate signals arising from different
mitigation decisions. If these delays in the effects of mitigation
are not understood as only temporary, they could arguably
challenge the continuation of global efforts in curbing anthro-
pogenic emissions. Our study aims at characterizing and quan-
tifying these temporary delays, by detecting the time at which the
mitigation-induced climate change signal emerges from the noise
of internal variability. We see the results as not only interesting
in a scientific perspective, because this study quantifies such
waiting times and their uncertainty at both global and regional
scales, but also relevant to policy making, because they inform
the public and decision makers that (otherwise frustrating) time
delays should be expected.
The concept of detection is used in climate science when

identifying the long-term historic changes in climate variables (9)
that cannot be explained by internal variability alone. Here, we
extend it, as in other recent studies (10, 11), to detecting the
emergence of a signal in future climate simulations, specifically
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in global CO2 atmospheric concentrations and average surface
air temperatures (TAS) over the 21st century. In our study, the
signal is that of mitigation, as we ask at what time its benefits,
in terms of lower CO2 concentrations and lower atmospheric
temperatures, will become detectable from the background
noise. The problem of detecting mitigation benefits therefore
sets our detection problem apart from the traditional detection
of a signal in individual scenario experiments (12). We argue
that the effects of mitigation can only be defined in relative
terms, as the emergence of a significant difference between the
characteristics of a world under mitigation and those of the
world that might have been in its absence.
The sources of uncertainty affecting the identification of the

emerging signal can be identified in (i) the confounding effect of
internal, high-frequency variability and, most importantly, for the
detection of a long-term trend, low-frequency variability; (ii) the
unknown amplitude of these internal modes; and (iii) the un-
known value of climate sensitivity, determining the strength of
the climate system response to external forcing. We design the
study to address all three sources:

i) We seek to minimize the confounding effect of multidecadal
noise by defining the signal of mitigation as a statistically sig-
nificant trend emerging in the yearly values of a time series of
differences between the output (CO2 or TAS) of climate
model simulations under the RCP2.6 scenario and the corre-
sponding output under a counterfactual scenario (RCP4.5 or
RCP8.5). Using yearly differences between scenarios should
dampen the low-frequency variability of the two original time
series and, correspondingly, should let high-frequency vari-
ability be the major determinant of the correlation structure
of the resulting time series. We empirically estimate the cor-
relation structure of the difference series and account for it
in the statistical noise model.

ii) We perform the differencing between mitigation and coun-
terfactual scenarios using multiple initial-condition ensemble
members (ICs) within each of five different climate models
to explore the effect of different realization of internal var-
iability but also expecting the size of internal variability to be
different across the five models. By considering the set of
within-model results, our summary estimates should be ro-
bust to the form and size of the internally generated noise.

iii) Finally, we also take between-scenario differences by pair-
ing individual time series from different climate models,
thus letting the different sizes of internal variability (11);

climate sensitivity; and, more generally, model structural
uncertainty (13, 14) combine to confound the signal fur-
ther in this between-model approach.

We propose this latter method, differencing across models,
not simply as a stress test of the robustness of our quantitative
estimates. In addition, we mimic through this approach a real-
world situation whereby, having pursued a mitigation policy, the
question could be raised of how large a benefit it provided. The
answer could only be obtained by comparing the real-world
temperature outcomes with modeled temperatures under coun-
terfactual scenarios; however, in the presence of uncertainty
about climate sensitivity, a range of models would have to be
used. Taking this thought exercise one step further, as we stand
here today imagining this future test, we do not know what the
mitigation outcome will be either; hence, the necessity of per-
forming this analysis across a set of models by pairing them in all
possible combinations.
We use five Earth System Models (ESMs) from CMIP5 (2)

that span a range of equilibrium climate sensitivity (15) between
2.7 °C and 4.6 °C, and provide at least three ICs for the three
RCPs of interest (RCP2.6, RCP4.5, and RCP8.5, diverging in
their emission paths by 2020 at the latest; Fig. 1) (3). Table S1
describes the relevant characteristics of the five ESMs.
In essence, we seek to determine when (i) annual difference

values of atmospheric CO2 concentration and TAS between a
nonmitigation scenario and the “baseline” RCP2.6 mitigation
scenario start showing a significant trend and (ii) the emergence
of this trend from the year-to-year noise is established perma-
nently for the remaining length of the simulations considered. We
analyze time series of global averages for CO2 and TAS, as well as
regional averages of TAS, using the Coordinated Regional cli-
mate Downscaling Experiment (CORDEX) domains (16) (aver-
aging TAS over land only) shown in Fig. 2. We also analyze
seasonal values of TAS (boreal winter [December-January-Feb-
ruary (DJF)] and boreal summer [June-July-August (JJA)]). A
further description of our statistical approach is provided in
Materials and Methods, and details are provided in SI Text.

Results for CO2 Concentrations
First, we apply the within-model type of analysis to time series of
CO2 concentrations from different RCPs. To the scenario-specified
time series of CO2 concentration, we superimpose variability derived
for each of the three ICs by estimating the Institut Pierre-Simon
Laplace coupled model version 5A lower resolution (IPSL-CM5A-
LR) model’s land fluxes over seasonal and interannual time scales
(Fig. 3, Upper; concentration trajectories). The year-to-year vari-
ability (the standard deviation of the yearly values after de-
trending the time series) is on the order of a unit (parts per
million), and it disappears on the scale of total concentration
values. Because atmospheric CO2 concentration is proportional
to cumulative emissions, sustained significant emission reduction
leads to atmospheric concentration rapidly separating, dwarfing
the natural year-to-year variability, and the trend in the time
series of differences emerges as significant very quickly (Fig. 3,
Lower) as a result of a large signal-to-noise ratio in atmospheric
CO2 concentrations (17, 18) (on the order of 60–130 to 450
depending on the scenario considered; Table S1). Times to de-
tection are consistently on the order of 10 y from the time of
separation of the CO2 emission pathways (Table 1). We expect
the results from IPSL-CM5A-LR to be very similar for other
ESMs because the high signal-to-noise ratio is a characteristic
common to the carbon cycles of all ESMs (19).

Results for Global, Regional, and Seasonal Temperatures
How much longer does it take for the effect of mitigation on
temperatures to become apparent? We analyze 21st century
time series of annual and seasonal values of TAS at global and

1850 1900 1950 2000 2050 2100

0

5

10

15

20

25

30

P
gC

/y

historical/RCP 2.6
RCP 4.5
RCP 8.5

Global Emissions according to RCPs

Fig. 1. CO2 emission pathways according to historical estimates and RCP
assumptions.
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regional scales [averaging TAS over the CORDEX land-only
domains (16); Fig. 2].
For each individual global, regional, and seasonal or annual

average, the individual IC trajectories of TAS from different

RCPs eventually separate over the course of the future period
[e.g., Fig. 4, Upper; time series of globally averaged TAS from
three ICs of one of the models, Community Climate System
Model version 4 (CCSM4), using historical forcings (1850–2005),
followed by the three RCPs (2006–2100); corresponding plots for
the other four ESMs considered are shown in Fig. S1]; thus, we
expect that yearly differences between any IC under RCP2.6 and
any IC under a higher scenario will eventually show a significant
trend [Fig. 4, Lower; two corresponding sets of nine trajectories
of yearly differences between any IC from the two counterfactual
scenarios, RCP4.5 (light blue) and RCP8.5 (red), and any IC
from RCP2.6]. We expect the noise in the trajectories of these
differences to be confounding at first, but after a few decades,
we expect a significant and persistent positive trend to emerge.
Individual trajectories differ in the exact year when the trend
emerges. As described in Material and Methods, we compute 225
values of the time of emergence of a significant and lasting
positive trend for each of the two “mitigation vs. counterfactual
scenarios” choices. To validate our methodology in a fashion as
close as possible to detection and attribution approaches, we
apply the same analysis to the time series of differences between
ICs under the same scenario, which constitute for us “control”
cases. We never find a case where a significant trend emerges
and persists in these control cases. We take this result as further
supporting the robustness of our detection estimates, because it
confirms that no trend from the convolution of multidecadal
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Fig. 2. The 12 regional domains over which we average model output of TAS at annual and seasonal (DJF and JJA) scales, in addition to considering global
averages (global average and global land-only average). The regions are Africa (AFR), Antarctica (ANT), Arctic (ARC), Australia (AUS), Central America (CAM),
Central Asia (CAS), East Asia (EAS), Europe (EUR), Mediterranean Basin (MED), North America (NAM), South America (SAM), and Western Asia (WAS).
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Fig. 3. Atmospheric CO2 concentration time series (Upper) and their dif-
ferences (Lower) obtained from the IPSL-CM5A-LR model (three ICs for each
scenario).

Table 1. Time to detection of mitigation when analyzing
differences in annual values of CO2 concentrations from
IPSL-CM5A-LR

IPSL-CM5A-LR RCP2.6 vs. RCP4.5 RCP2.6 vs. RCP8.5

1 ensemble member 2030 (10) 2019 (9)
5 ensemble members 2031 (11) 2021 (11)
9 ensemble members 2031 (11) 2022 (12)

The variability is modeled on the basis of the ESM’s seasonal land fluxes.
Values are listed as calendar year and, in parentheses, as number of years
since the separation of emission paths under the two counterfactual RCPs
considered.

Tebaldi and Friedlingstein PNAS Early Edition | 3 of 6

EA
RT

H
,A

TM
O
SP

H
ER

IC
,

A
N
D
PL

A
N
ET

A
RY

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300005110/-/DCSupplemental/pnas.201300005SI.pdf?targetid=nameddest=SF1


variability, which would affect these within-scenario differences
as well as the between-scenarios differences, emerges and per-
sists. Note, however, that this “sanity check” can be performed
only within models, because the differences between models

could be affected by differences in the response due to climate
sensitivity, which could introduce systematic trends even for dif-
ferences taken under the same scenario.
The comparison across regions confirms, as expected, that

detection happens earlier at global than regional scales and when
both ocean and land domains are averaged, thanks to a larger
signal-to-noise ratio over oceans. When using RCP4.5, median
times to detection start around 2045 at the global scale (25–30 y
after the separation of the CO2 emissions paths between these
two scenarios) and as late as 2060 for annual averages over some
regions (Australia or Antarctica) (Table 2). Generally, winter
averages (DJF in the Northern Hemisphere, JJA in the Southern
Hemisphere) are more challenging for detection, adding, on
average, a decade to the detection time, whereas summer aver-
ages behave similar to annual averages (Tables S2 and S3). This
is mainly due to a larger variability (noise) in the wintertime TAS
that more than makes up for a slightly larger signal in the same
seasonal values. As an example, for North America averages under
the RCP4.5 comparison, representing the regional results showing
the larger difference in detection time statistics between annual
and summer averages, on the one hand, and winter averages, on
the other hand, the noise size is two- to threefold larger in winter
(depending on the ESM), whereas the signal is only a fraction (10–
15%) larger in that season. The spread of times to detection is very
wide, covering about five decades in most cases. For globally av-
eraged temperature, detection at a 95% confidence level only
happens around 2075 when using RCP4.5, which is 55 y after the
emission paths diverge. Fig. 5 summarizes these results for global
and regional TAS (annual and seasonal averages) from the com-
parison between RCP2.6 and either RCP4.5 (Upper) or RCP 8.5
(Lower). We add along the right axis time defined in years after
separation of emission pathways.
The most striking difference when using RCP8.5 as coun-

terfactual pertains to the width of the distributions rather than
their medians, when considering that the CO2 emission pathways
of RCP2.6 and RCP8.5 diverge 10 y earlier (around 2010) than
for RCP2.6 and RCP4.5. The ranges of the distributions in Fig. 5
(Lower) are significantly narrower, because natural variability
plays a relatively lesser role in the presence of a stronger an-
thropogenic signal. The fifth to 95th percentile span, on average,
three decades rather than five decades, with a detection at the
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Fig. 4. (Upper) Time series of globally averaged (GLO) annual mean value of
TAS for the historic period and three RCPs as simulated by one ESM (CCSM4); each
line represents an individual ensemble (Ens.)member. (Lower) Time series of year-
by-year differences in global average annual temperatures between each com-
bination (total of nine) of ensemblemembers, as represented inUpper, under the
two pairs of RCPs, RCP8.5 vs. RCP2.6 (red) and RCP4.5 vs. RCP2.6 (light blue).

Table 2. Statistics from the distributions of times of detection obtained across 225 differences
for each of two comparisons (RCP2.6 vs. RCP4.5 and RCP2.6 vs. RCP8.5)

RCP2.6 vs. RCP4.5 RCP2.6 vs. RCP8.5

Region
Fifth

percentile Median
95th

percentile Region
Fifth

percentile Median
95th

percentile

GLO 2022 (2) 2045 (25) 2077 (57) GLO 2021 (11) 2037 (27) 2055 (45)
LAND_GLO 2027 (5) 2047 (27) 2074 (54) LAND_GLO 2022 (12) 2039 (29) 2053 (43)
WAS 2031 (11) 2050 (30) 2079 (59) AFR 2024 (14) 2041 (31) 2054 (44)
AFR 2032 (12) 2051 (31) 2085 (65) WAS 2026 (16) 2041 (31) 2053 (43)
CAS 2029 (9) 2051 (31) 2076 (56) MED 2028 (18) 2042 (32) 2057 (47)
NAM 2029 (9) 2051 (31) 2080 (60) CAS 2029 (19) 2043 (33) 2057 (47)
EAS 2031 (11) 2052 (32) 2074 (54) EAS 2028 (18) 2043 (33) 2057 (47)
ARC 2028 (8) 2054 (34) 2082 (62) ARC 2025 (15) 2044 (34) 2058 (48)
CAM 2032 (12) 2054 (34) 2086 (66) NAM 2028 (18) 2045 (35) 2059 (49)
SAM 2033 (13) 2054 (34) 2086 (66) AUS 2031 (21) 2046 (36) 2061 (51)
EUR 2037 (17) 2055 (35) 2088 (68) CAM 2028 (18) 2046 (36) 2065 (55)
MED 2035 (15) 2056 (36) 2084 (64) SAM 2029 (19) 2046 (36) 2065 (55)
AUS 2039 (19) 2058 (38) 2089 (69) EUR 2031 (21) 2047 (37) 2060 (50)
ANT 2042 (22) 2064 (44) 2097 (77) ANT 2033 (23) 2051 (41) 2075 (65)

Values are listed as calendar year and, in parentheses, as number of years since the separation of emission
paths under the two counterfactual RCPs considered. AFR, Africa; ANT, Antarctica; ARC, Arctic; AUS, Australia;
CAM, Central America; CAS, Central Asia; EAS, East Asia; EUR, Europe; GLO, global average; LAND_GLO, global
land-only average; MED, Mediterranean Basin; NAM, North America; SAM, South America; WAS, Western Asia.
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95% confidence level around 2055 for global annual tempera-
ture, 45 y after emission paths diverge rather than 55 y as in the
case for RCP4.5.
The large uncertainty in detection times, up to 60 y for RCP4.5

vs. RCP2.6, results from the combination of time series from
models with different climate sensitivity and signal-to-noise char-
acteristics. Fig. S2 and Table S4 show how much narrower ranges
would be for global TAS when performing this analysis within
each individual model. In reality, model uncertainty, together with
uncertainties about the size of low-frequency internal variability,
compound to determine the waiting times quantified here.
Results may vary even more significantly when using smaller

and better separated domains, such as, for example, the regions
of Giorgi and Francisco (20) (Fig. S3).

Discussion
We have performed a detection analysis of the times until the
effects of future mitigation over global atmospheric CO2 con-
centrations and annual and seasonal surface temperatures be-
come significant at the global scale and, for temperature, also at
the regional scale, accounting for the sensitivity of results to
model uncertainties, internal variability, and the strength of the
signal under the counterfactual nonmitigation scenario. We find
a wide range of results but, as a consensus estimate, for tem-
perature, time to detection is not shorter than 25 y after emission
mitigation starts, even using the median of the distribution as the

criterion. The median time to detection, relative to the time of
departure of emissions, is not significantly reduced when com-
paring RCP2.6 with RCP8.5, but the range of outcomes, and
therefore the uncertainty, is significantly so. These numbers apply
to global average temperature, and they increase when consid-
ering regional outcomes, on average, by 5–10 y. The signal-to-noise
ratio for CO2 concentrations over time is at least an order of
magnitude larger than for surface temperatures; hence, the sepa-
ration of concentration pathways is detectable much earlier and
more robustly within about 10 y from the emission separation. This
indicates that the absence of early discernibility of the climate
benefits of mitigation is due to the inertia and internal variability of
the physical climate system rather than the global carbon cycle.
As studies using the more traditional detection and attribution

methodologies have shown, large-scale average temperatures
most readily reveal the fingerprint of external forcings (21); thus,
we expect detection of benefits relevant to other climate vari-
ables to be even further delayed. We expect those variables re-
lated to temperature averages (e.g., atmospheric temperatures,
heights, thicknesses) to show similar times to detection, whereas
other variables with smaller signal-to-noise ratios, such as pre-
cipitation or other aspects of the hydrological cycle and extremes,
are expected to show delay in detection of mitigation. Recently,
using a simple model tuned to reproduce CCSM4 climate sensi-
tivity, the behavior of sea level rise under different mitigation
scenarios was analyzed (22), focusing on the effects of mitigation
of short-lived species as opposed to the more traditional CO2
mitigation pathways that we address here. That analysis suggests
that CO2 mitigation effects on sea level rise compared with
a business as usual scenario are further delayed compared with
changes in global temperatures, and the effects would not be
perceivable until well into the second half of this century. The
scenarios used in that analysis are RCP2.6 for the CO2 mitigation
case and RCP 6.0 for “business as usual.”
Our results use CO2 emissions as a measure of global miti-

gation but would be very similar if using total greenhouse gases
forcing (5). Sulfate aerosols do not affect these results because
their emissions decrease at similar rates in all RCP scenarios (4).
Times to detection appear long under a naive expectation that

climate impact of mitigation action would be discernible imme-
diately. From the opposite perspective, our results suggest that
the benefits would be apparent in all cases before the end of this
century, and even by the middle of the century in many regions.

Materials and Methods
Because we look to detect a signal in a time series of annual differences
between two original time series of model output, we are dealing with noise
larger in amplitude than if we were concerned with detecting a signal in the
original time series (similar to what we would have accounted for had we
considered the emergence of significant trends in the individual time series
first and then tested the hypothesis that these trends differed from one
another). Also, because computing year-by-year differences changes the
spectral characteristics of the resulting series compared with the original two
series, we are not necessarily affected by decadal or multidecadal internal
variability with the same characteristics as the original time series; neither we
can simply sum the variability of the two original time series, because they
may not be mutually independent. Therefore, we proceed through a purely
empirical analysis of the difference time series as follows. Each of our trend
analysis consists of fitting linear models by generalized least squares using
years as the predictor. Generalized least squares compute estimates of the
coefficients of a regression by using estimates of the covariance matrix of the
residuals that account for the presence of time correlation (the algorithm is
usually implemented as a recursive estimation). Accounting for time corre-
lation in the residuals does not usually change the estimated value of the
linear coefficient (the trend value in our case) significantly but increases the
estimated value of its variance, which crucially affects the outcome of any test
of significance. For our difference time series, we find that an autoregressive
structure of order 1 (AR1) is appropriate to account for the temporal au-
tocorrelation of the residuals in all cases. Therefore, our trend estimates and
significance testing are based on the generalized least squares fit of the time
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Fig. 5. Distributions of time of detection for global and regional temper-
atures, using RCP2.6 as a baseline and RCP4.5 (Upper) or RCP8.5 (Lower) as
a counterfactual scenario. For each regional domain, three distributions are
summarized by box plots, with one pertaining to annual average TAS (Left,
green), one for DJF average TAS (Center, cyan), and one for JJA averages
(Right, orange). Each box plot shows the median of the distribution as
a thick line within the box and the interquartile range as the lower and
upper sides of the box. The whiskers extend from the fifth quantile to the
95th quantile. Regions are ordered by increasing median detection time
using annual average TAS results (green box plots, thick lines). The red line
marks the time of clear separation in the CO2 emission pathways of the two
scenarios. The axis to the right measures the time of detection in terms of
years since the separation in emission pathways has occurred.
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series, with an estimate of the covariance matrix of the residuals obtained by
fitting the parameters of an AR1 process to them. The estimation procedure is
automatically performed, once the order of the AR process is specified, in, for
example, the implementation of the function gls() in the software package R
(www.R-project.org/).

Trend analysis is performed on all possible time series of year-by-year dif-
ferences obtained by comparing each of the 15 members of RCP2.6 simulations
with each of the 15 members of RCP4.5 or RCP8.5 simulations (model output is
first averaged over the regional domains and into annual or seasonal means).
Trends over increasingly long stretches of the time series (10-, 11-, 12-,. . .95-y
long stretches starting at 2005) are computed and tested for significance, and
the time at which the trend becomes significant and stays significant for the
remainder of the century is defined as detection time.

Empirical distributions and summary statistics of detection times across
the 225 possible time series of differences are then computed and form the

basis for our conclusions. A detailed description of the methodology is
provided in SI Text.
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