Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Greenhouse-gas emission targets for limiting global warming to 2 C

Greenhouse-gas emission targets for limiting global warming to 2 C

More than 100 countries have adopted a global warming limit of 2 6C or below (relative to pre-industrial levels) as a guiding principle for mitigation efforts to reduce climate change risks, impacts and damages1,2. However, the greenhouse gas (GHG) emissions corresponding to a specified maximum warming are poorly known owing to uncertainties in the carbon cycle and the climate response. Here we provide a comprehensive probabilistic analysis aimed at quantifying GHG emission budgets for the 2000–50 period that would limit warming throughout the twenty-first century to below 2 6C, based on a combination of published distributions of climate system properties and observational con- straints. We show that, for the chosen class of emission scenarios, both cumulative emissions up to 2050 and emission levels in 2050 are robust indicators of the probability that twenty-first century warming will not exceed 26C relative to pre-industrial temperatures. Limiting cumulative CO2 emissions over 2000–50 to 1,000Gt CO2 yields a 25% probability of warming exceeding 2 6C—and a limit of 1,440 Gt CO2 yields a 50% probability—given a representative estimate of the distri- bution of climate system properties. As known 2000–06 CO2 emissions3 were234 Gt CO2, less than half the proven economi-cally recoverable oil, gas and coal reserves 4–6 can still be emitted up to 2050 to achieve such a goal. Recent G8 Communique ́s7 envisage halved global GHG emissions by 2050, for which we estimate a 12– 45% probability of exceeding 2 6C—assuming 1990 as emission base year and a range of published climate sensitivity distributions. Emissions levels in 2020 are a less robust indicator, but for the scenarios considered, the probability of exceeding 26C rises to 53–87% if global GHG emissions are still more than 25% above 2000 levels in 2020.

Credits: Nature Vol 458|30 April 2009|doi:10.1038/nature08017

Fair Use OK

DOWNLOAD FILE — PDF document, 3,369 kB (3,450,335 bytes)