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ABSTRACT

Using the Palmer drought severity index, the ability of 19 state-of-the-art climate models to reproduce ob-

served statistics of drought over North America is examined. It is found that correction of substantial biases in

the models’ surface air temperature and precipitation fields is necessary. However, even after a bias correction,

there are significant differences in the models’ ability to reproduce observations. Using metrics based on the

ability to reproduce observed temporal and spatial patterns of drought, the relationship between model per-

formance in simulating present-day drought characteristics and their differences in projections of future drought

changes is investigated. It is found that all models project increases in future drought frequency and severity.

However, using the metrics presented here to increase confidence in the multimodel projection is complicated

by a correlation between models’ drought metric skill and climate sensitivity. The effect of this sampling error

can be removed by changing how the projection is presented, from a projection based on a specific time interval

to a projection based on a specified temperature change. This modified class of projections has reduced

intermodel uncertainty and could be suitable for a wide range of climate change impacts projections.

1. Introduction

Sustained periods of drought can be disruptive to both

human and natural systems. Drought is a relative con-

dition, and is best quantified by considering local cli-

matological factors. In general, drought is characterized

by a lack of available water. There are different per-

spectives on what constitutes drought, and a variety of

definitions are available (Heim 2002). The balance be-

tween evaporation and precipitation determines the

amount of soil moisture—a quantity critical to agricul-

ture. The Palmer drought severity index (PDSI) is a

widely recognized measure of droughts extending sev-

eral months or more (Heim 2002). In this paper, we

examine the ability of the climate models used in the

Fourth Assessment Report (AR4) of the Intergovern-

mental Panel on Climate Change (IPCC) to reproduce

observed PDSI statistics over North America (Solomon

et al. 2007). We rank the models’ performance by a variety

of measures, and explore whether performance in simu-

lating current climate is functionally related to the scatter

in projections of future changes in drought.

The PDSI code used in this study is the same as that

used for the National Oceanic and Atmospheric Admin-

istration’s National Climatic Data Center (NOAA/NCDC)

operational product and requires monthly precipitation

and mean temperature as input. Precipitation is used as

a measure of moisture supply, while temperature is used

to estimate evapotranspiration or moisture demand.

The use of temperature to estimate moisture demand

makes the Palmer model well suited for temperature-

sensitivity drought studies. Drought is classified into the

following categories: incipient (20.5 $ PDSI . 21.0),

mild (21.0 $ PDSI . 22.0), moderate (22.0 $ PDSI .

23.0), severe (23.0 $ PDSI . 24.0), and extreme
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(24.0 $ PDSI). Although not specifically designed to di-

agnose soil moisture, the NCDC PDSI algorithm contains

its own, albeit simple, soil moisture scheme. In a multimodel

intercomparison of drought statistics, a model-independent

soil moisture treatment removes the complexities of di-

rectly comparing soil moisture schemes of varying so-

phistication. In an early study, Rind et al. (1990) found

that the then-current version of the Goddard Institute for

Space Studies General Circulation Model (GISS-GCM)

potentially underestimated future drought in the United

States because of land surface model component de-

ficiencies. Land surface models have improved signif-

icantly in the past 20 years, however not all the modern

climate models are state of the art in that category. Soil

moisture feedback is still a factor through its influence

on precipitation variability. Furthermore, details in the

treatment of vegetation and its transpiration differ greatly

among climate models, which may cause different stomatal

responses to climate change that would eventually be re-

flected in the response of temperature and precipitation.

A more detailed description of the Palmer index, including

its soil moisture treatment, is given in appendix A.

In previous studies, Schubert et al. (2004) found that

only one-third of the total low frequency variability in

Great Plains precipitation is due to Pacific sea surface

temperature fluctuations, with the remainder generated

locally and driven by soil moisture feedback. Seager et al.

(2005) obtained similar results, and traced persistent wet

and dry periods in the western United States to persistent

tropical Pacific SST variations. Easterling et al. (2007)

showed that an increase in precipitation has masked the

severity of recent drought in the western United States

caused by increases in air temperature. Relevant to the

current investigation is the study by Burke et al. (2006),

which found a detectible contribution from anthropo-

genic emissions of greenhouse gases to the global drying

that has been observed since 1980. The Burke et al. (2006)

study relied on the PDSI to measure drought, using one

of the 19 climate models considered here. Because the

PDSI is generally more sensitive to observed temperature

changes than observed precipitation, this detection result

follows from the robust detectibility of twentieth century

temperature changes.

Here, we consider simulations from 19 different climate

models archived in the Coupled Model Intercomparison

Project (CMIP3) database managed by the Program for

Climate Model Diagnosis and Intercomparison. Monthly-

mean surface air temperature and precipitation from

simulations of the twentieth century (20c3m) and the

twenty-first century were used to calculate monthly

values of PDSI. The twenty-first century simulations

were forced by anthropogenic atmospheric conditions

prescribed by the IPCC Special Report on Emissions

Scenarios (SRES) A1B scenario. This protocol stabilizes

atmospheric concentration of carbon dioxide at 720 ppm

at the end of the twenty-first century and is considered to

be a moderate greenhouse gas emission reduction scenario.

To reduce the ‘‘noise’’ of the natural internal variability

of the climate system, some of the 19 models were in-

tegrated over these historical and future periods as en-

sembles of independent realizations. Ensembles were

generated by perturbing the initial conditions of the

atmosphere and/or ocean. Each realization contains some

climate response to the imposed forcing changes (the

‘‘signal’’) plus a specific sequence of climate noise. Since

the noise is uncorrelated from one realization to the

next, its amplitude is reduced by averaging over reali-

zations, thus providing a better estimate of the un-

derlying signal. After first calculating the ensemble

average PDSI over each individual model’s 20c3m or

A1B realizations, we then form a multimodel ensemble,

equally weighted by all models considered.

The models are formulated at a variety of spatial res-

olutions. To ease intercomparison of the models’ ability

to simulate PDSI statistics, modeled and observed tem-

perature and precipitation data were regridded prior to

the PDSI calculation to a spectral resolution of T42 (a

Gaussian grid of about 400 km at the equator). This is the

resolution of the coarsest model in the study. All models

and observations were used in identical ways to drive the

PDSI code. An examination of simulated PDSI quality as

a function of model resolution is deferred to a later study.

A list of the CMIP3 models and the number of realizations

of each century used in this paper is presented in Table 1.

The U.S. and Canadian temperature and precipitation

data were from their respective national archives (the

National Climatic Data Center and Environment Canada)

while the Mexican data were provided by A. Douglas

(Creighton University, 2008, personal communication).

Observations include monthly-averaged total precipi-

tation and temperature. These datasets have been subject

to extensive quality control. Temperature data have been

adjusted for inhomogeneities arising from station moves,

instrument changes, and other factors that can cause ar-

tificial discontinuities in the time series. Homogenization

relies on the method documented in Menne and Williams

(2009). Our analysis is restricted to North America. See

the appendices for further details.

2. Simulated and observed drought statistics of
North America

Accurate simulation of any measure of drought requires

a realistic representation of the surface air temperature

and precipitation climatology. Since drought conditions

represent a significant departure from the average,

1360 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 12



accurate simulation of the climate variability should be

integral to successful reproduction of key features of

observed drought behavior. For accurate representation

of a soil moisture-based metric like the PDSI, it is also

crucial to maintain the correct balance between pre-

cipitation and evaporation. Too high an average tem-

perature or insufficient average precipitation will bias

the soil to be overly dry. Likewise, too low a tempera-

ture or too much precipitation will bias the soil to be

excessively moist. The nonlinear dependence of soil

moisture on temperature and precipitation can cause such

systematic errors to adversely affect the simulation of

PDSI statistics.

To assess the models’ simulated PDSI statistics, we use

the 1950–99 period as the base climatology from which

PDSI is calculated. We selected this period for two rea-

sons: 1) because of the generally high quality of available

observations, and 2) to avoid usage of the major drought

of the 1930s in the calculation of ‘‘normal’’ conditions.

The disadvantage of this choice is the significant anthro-

pogenic trend in surface air temperature in the later part

of the period. Additionally, a less severe although still

major drought did occur in the 1950s. In the PDSI cal-

culation shown below, each individual model’s drought

measure is derived relative to its own climatology, not the

actual or mean model climatology.

Figure 1 shows the difference between the multimodel

mean temperature and precipitation (averaged over

1950–99) and the NCDC observational dataset. Large

biases are revealed, such as the cold and wet model

TABLE 1. The CMIP3 climate models used in this study. Full details about model formulation and resolution may be found at the CMIP3

Web site (http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php).

Model acronym Institution Country

Atmospheric component

resolution

Bjerknes Center for Climate

Research Bergen Climate Model

version 2 (BCCR-BCM2.0)

Bjerknes Center for Climate Research Norway T63L31

CCCma CGCM3.1 Canadian Centre for Climate Modeling

and Analysis

Canada T47L31

CCCma CGCM3.1_t63 Canadian Centre for Climate Modeling

and Analysis

Canada T63L31

CCSM3 National Center for Atmospheric Research United States T85L26

CNRM-CM3 Centre National de Recherches

Meteorologiques

France T42L45

CSIRO Mk3.0 Commonwealth Scientific and Industrial

Research Organization

Australia T63L18

ECHAM5 Max Planck Institute for Meteorology Germany T63L32

GFDL CM2.0 Geophysical Fluid Dynamics Laboratory United States ;2.58 3 ;28L24

GFDL CM2.1 Geophysical Fluid Dynamics Laboratory United States ;2.58 3 ;28L24

Third climate configuration of the Met

Office Unified Model (HadCM3)

Met Office United Kingdom 2.58 3 3.758L

Hadley Centre Global Environmental

Model version 1 (HadGEM1)

Met Office United Kingdom N96L38

Flexible Global Ocean–Atmosphere–

Land System Model gridpoint

version 1.0 (FGOALS-g1.0)

Institute of Atmospheric Physics China

INMCM3 Institute for Numerical Mathematics Russia 48 3 58L21

IPSL CM4 L’Institut Pierre-Simon Laplace France 2.58 3 3.758L19

MIROC(hires) Center for Climate System

Research–National Institute

for Environmental Studies–Frontier

Research Center for Global Change

Japan T105L56

MIROC(medres) Center for Climate System

Research–National Institute for

Environmental Studies–Frontier

Research Center for Global Change

Japan T42L19

ECHAM and the global Hamburg

Ocean Primitive Equation (ECHO-G)

Meteorological Institute of the University

of Bonn

Germany T30L19

Meteorological Research Institute

Coupled General Circulation Model,

version 2.3.2a (MRI CGCM2.3.2a)

Meteorological Research Institute Japan T42L30

PCM National Center for Atmospheric Research United States T42L17
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FIG. 1. The 1950–99 North American climatologies of the NCDC observations minus the mean

model average. (a) Precipitation bias (%) and (b) temperature bias (K).
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bias in the western United States and Mexico. These

biases affect the calculation of drought metrics like the

PDSI.

Use of the raw, uncorrected model output to calculate

the PDSI leads to systematic underprediction of the

occurrence of drought, especially in the arid southwest

United States and Mexico. Figure 2a shows the percent

area of the continental United States and Mexico in

moderate drought conditions (PDSI , 22) for each

month over the period 1900–2098. In this section, we

focus attention on an analysis of model errors over the

twentieth century. The discussion of future drought

projections is deferred until section 3.

The results from the NCDC observations (in red) clearly

show the ‘‘Dust Bowl’’ conditions of the mid-1930s. At the

peak of these conditions, nearly 60% of the United

States and Mexico is in moderate drought. There is some

suggestion of a trend toward increasing drought begin-

ning around 1980, but natural variability is very large.

Our study does not explicitly examine whether an

anthropogenic fingerprint pattern is identifiable in ob-

served patterns of changes in the PDSI over North

America. As noted earlier, one optimal detection study

found a detectible human influence on observed patterns

of global-scale changes in the PDSI (Burke et al. 2006).

A second observational PDSI estimate is also shown

(in black). This was constructed from the Hadley Centre

Climate Research Unit global temperature dataset, ver-

sion 3 (HadCRUT3v) surface temperature (Jones et al.

1999; data available online at http://www.cru.uea.ac.uk/

cru/data/temperature/) and Global Precipitation Clima-

tology Project (GPCP) precipitation datasets (Adler et al.

2003). The latter dataset spans 1979–2006 only, so this

period is used to calculate the baseline climatology for

this particular PDSI calculation only. There is close

agreement with the NCDC-based estimate of changes in

the PDSI. The multimodel mean result (shown in blue)

reveals that relative to observations, the average area

undergoing moderate drought conditions is systemati-

cally underpredicted in the simulations.

Because the model results shown by the blue line in

Fig. 2 are averaged over both realizations and models,

natural variability is considerably damped with respect

to observations. Individual realizations are shown by the

background gray lines, and reveal that some models can

produce significant areas of moderate drought condi-

tions. However, the frequency of these events is too low

in all of the models considered in this study. Figure 2b

shows the percent area in extreme drought conditions

(PDSI , 24) for the same North American region. Again,

the models employed here consistently underpredict the

average area experiencing these conditions, as well as

the frequency of occurrence of large drought events.

The results shown in Fig. 2 provide strong motivation

for objective correction of the models’ temperature and

precipitation fields. The intent of this correction is to

improve the portrayal of future drought conditions. The

assumption in our correction procedure is that the un-

derlying bias between observations and in any given

model simulation varies over the seasonal cycle, but not

from year to year. Error fields constructed from the

difference between the 1950–99 climatological average

for each model and for the observations form the basis of

this correction factor. To preserve the positive defi-

niteness of precipitation, we apply the following multi-

plicative correction at each grid point to restore the

simulated 1950–99 average to observations:

correction(m) 5

�
y

observed(y, m)

�
y

simulated(y, m)
,

corrected(y, m) 5 correction(m) 3 simulated(y, m)

FIG. 2. (a) Area fraction of the continental United States and

Mexico experiencing drought conditions (PDSI , 22) calculated

from observations and raw model output. The light gray curves are

individual model realizations. (b) As in (a) except for extreme

drought conditions (PDSI , 24).
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where m represents each of the 12 months and y de-

notes an index over years (from 1950 to 1999). We note

that this correction technique also alters the simulated

precipitation variability, although not necessarily in

any preferential manner. We apply the correction to

each individual month of each realization at each in-

dividual grid point. To be consistent, we also apply a

similar correction to temperature. The effect on vari-

ability is minimal in this case as the units are Kelvins,

keeping the temperature correction factor small in

magnitude.

Figure 3a shows the percent area of the continental

United States and Mexico in moderate drought condi-

tions from the corrected model temperature and precip-

itation fields (c.f. Figure 2). Even with the bias correction,

the models continue to systematically underpredict

drought extent and severity. However, the correction

does increase both the average fraction of area experi-

encing drought conditions and the severity of the most

intense events. Inspection of the twentieth century por-

tion of Fig. 3b reveals that a number of 20c3m realizations

produced extreme drought events of magnitude similar to

that of the 1930s Dust Bowl.

The effect of this bias correction on the simulated

PDSI statistics varies significantly between models. In

Table 2, we show the fractional area of the continental

United States and Mexico experiencing moderate

drought (PDSI , 22) and extreme drought (PDSI , 24)

conditions. Results are averaged over the 1950–99 period.

The highlighted row labeled ‘‘mean model’’ corresponds

to the blue lines in Figs. 2 and 3. Note we have listed the

models in their rank order, based on the amount of area

experiencing moderate drought (PDSI , 22) conditions.

None of the model datasets, either uncorrected or cor-

rected, are able to exceed the observed drought areas.

In all but one of the models [Institute for Numerical

Mathematics Coupled Model Version 3.0 (INMCM3)],

the fractional area experiencing drought conditions was

increased by application of the correction. After cor-

rection, 11 of the models are able to reproduce more than

half the observed fractional area experiencing moderate

drought, with the best model [the Commonwealth Sci-

entific and Industrial Research Organisation Mark version

3.0 (CSIRO Mk3.0)] producing 87% of the observational

result. Thirteen of the 19 models also show increased

extreme drought conditions (PDSI , 24) after bias cor-

rection. The CSIRO Mk3.0 model also best reproduced

the observed fractional area experiencing extreme

drought, but only three models could reproduce more

than half of the observational estimate. The models that

did not improve their simulation of extreme drought are

preferentially clustered at the bottom of this rank-

ordered list. A brief analysis of changing the reference

period to the cooler interval of 1950–70 had no signifi-

cant effect on model error. Given the improvements

shown in Table 2, the remainder of the discussion in this

study focuses on PDSI statistics calculated from the

corrected model temperature and precipitation fields.

The results in Fig. 3 are an area integrated metric, and

do not reveal any information about the models’ ability

to reproduce drought conditions in the correct places.

To gain some insight into the spatial structure of simu-

lated drought, we count at each grid point the number of

months experiencing moderate drought (PDSI , 22)

and extreme drought (PDSI , 24) over the 600-month

period from January 1950 through to December 1999.

Figure 4a shows the observed percentage of moderate

drought months for all of North America. Figure 4b

shows the same percentage for extreme drought. A sim-

ilar analysis is performed with each of the model re-

alizations. Results are then averaged for models with

multiple realizations. The substantial structure in Fig. 4

reveals that the base climatology is an important factor

in determining the statistics of PDSI and reinforces the

FIG. 3. Area fraction of the continental United States and

Mexico experiencing drought conditions (PDSI , 22) calculated

from observations and corrected model output. (b) As in (a) except

for extreme drought conditions (PDSI , 24).
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need to correct the model biases discussed earlier.

Figures 4c,d show the same results averaged over all the

models with equal weighting. These figures reveal that

the models underpredict the amount of time spent in

both moderate and extreme drought across almost all of

North America.

We can use the values contained in Figs. 4a–d to

compute the pattern correlation (Houghton et al. 2001)

between the observed pattern of drought structure and

each individual model’s drought pattern. Our correlation

analysis is also limited to the land areas of the continental

United States and Mexico (128–858N, 1808–3108W). As

with our previous ‘‘drought fraction’’ results, we find that

the models used here vary considerably in their ability

to simulate the spatial distribution of drought. The left

panels of Fig. 5 show the relationship between the cen-

tered (mean value removed) pattern correlation of sim-

ulated moderate drought and extreme drought with

observations and the fractional area metric discussed in

Fig. 3. There is some evidence of a functional relationship

between these two metrics of model skill for extreme

drought conditions but not for the weaker drought con-

ditions. The right panels of Fig. 5 show this relationship

when the mean value is retained (uncentered) in the

correlation calculations. In these calculations, the four

models least well simulating drought conditions are

more clearly identified but no clear relationship exists

between the metrics for the remaining models.

Interestingly, the mean model’s drought pattern ex-

hibits better spatial correlation with the observations

than most of the individual models although it remains

rather low, as is evident from a visual inspection of Fig.

4. Similar results have been obtained in an analysis of

patterns of ENSO variability (Pierce et al. 2009). Al-

though the superiority of the mean model is not fully

understood, it may be related to the combined effects of

spatial smoothing and quasi-random distribution of

model errors in drought patterns.

A similar analysis of the quality of the spatial distri-

bution and areal extent of extreme drought reveals a

clearer relationship between the two metrics than for the

less dry case. Although most of the models produce no

more than half the observed extreme drought area, as

the extreme drought area increases the pattern corre-

lation metric also generally increases.

The poor performance of all the models after bias

correction of the mean temperature and precipitation

must be rooted in a defective simulation of variability in

one or both of these fields. We examined the effect of

short term variability by removing the climatological

annual cycle to calculate the monthly-mean anomaly

over 1950–99 for each model at each grid point. We then

compared the temporal standard deviation of the bias-

corrected temperature and precipitation, as well as the

local covariance of these two variables for each model

against the NCDC observations. Noting that every

TABLE 2. Fractional area of the continental United States and Mexico experiencing moderate drought (PDSI , 22) and extreme

drought (PDSI , 24) conditions over the 1950–99 period calculated from the NCDC observations and uncorrected and corrected climate

models.

NCDC observations

PDSI , 22 PDSI , 24

16.9% 3.4%

Model name Uncorrected Corrected Uncorrected Corrected

CSIRO Mk3.0 8.9% 14.8% 0.6% 2.3%

PCM 8.8% 13.7% 0.6% 1.9%

GFDL CM2.0 7.7% 12.1% 0.4% 1.0%

GFDL CM2.1 8.4% 11.7% 1.2% 1.9%

CCCma CGCM3.1_t63 9.6% 11.5% 0.7% 1.4%

ECHAM5 7.1% 10.8% 0.4% 1.5%

CCSM3 8.7% 10.8% 1.2% 1.7%

MRI CGCM2.3.2a 6.0% 10.6% 0.5% 0.8%

FGOALS-g1.0 5.6% 10.2% 0.2% 0.9%

CCCma CGCM3.1 8.9% 9.9% 0.7% 1.4%

BCCR-BCM2.0 6.2% 9.1% 0.3% 0.7%

Mean model 6.3% 9.1% 0.6% 1.0%

CNRM-CM3 5.3% 8.1% 0.6% 0.7%

HadCM3 4.7% 7.8% 0.5% 0.5%

ECHO-G 6.1% 7.3% 0.7% 0.5%

HadGEM1 4.6% 7.2% 0.3% 0.6%

INMCM3 6.6% 5.9% 0.8% 0.2%

IPSL CM4 2.5% 5.1% 0.1% 0.2%

MIROC(medres) 2.0% 3.4% 0.4% 0.1%

MIROC(hires) 1.5% 2.4% 0.2% 0.1%
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corrected model underpredicts current observed drought

area extent, we find that there is no relationship between

these second-order measures of short time variability and

any of the four drought measures. Model errors of vari-

ance and covariance are of both signs with some models

exhibiting too much variability while others too little.

Neither of the two superior models [CSIRO Mk3.0 and

the National Center for Atmospheric Research (NCAR)

Parallel Climate Model (PCM)] appears to stand out in

this regard. For instance, CSIRO Mk3.0 poorly simulates

the covariance but is superior in its simulation of the in-

dividual variances relative to the other models. Con-

versely, PCM simulates the covariance well but performs

poorly in its simulation of the individual variances. Nor

do the worst PDSI models systematically underperform.

For instance, the Model for Interdisciplinary Research on

Climate, high-resolution version [MIROC(hires)], ranked

near the bottom for the drought statistics, is one of the

best at reproducing the covariance of temperature and

precipitation.

We also constructed multimonth averages of the sim-

ulated bias-corrected fields to examine model perfor-

mance of variability over longer periods. Results from

averages six months long or less were as inconclusive as

that described above. This may not be surprising as

a more characteristic time scale for the PDSI is about

FIG. 4. (a) Observed percentage of time spent in drought conditions (PDSI , 22) during the 1950–99 period. (b) As in (a) except for

observed extreme drought conditions (PDSI , 24). (c) As in (a) except showing the multimodel average result. (d) As in (b) except

showing the multimodel average result. These fields form the basis for the pattern correlation metrics described in the text.
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nine months (Guttman 1998). The total (co)variance

mixes wet, dry, warm, and cold excursions from the mean

state. As the PDSI is a measure of the balance between

evaporation and precipitation, drought conditions must

occur when conditions are either warmer and/or drier

than the mean state. To investigate this further, we

separated out periods of the observations and each of

the simulations into three sets of data points based on

whether a period is warmer than average, drier than

average, or both of these conditions. We calculated the

total number of warm periods, the total number of dry

periods, the total number of periods when conditions

were both warm and dry, and the average and integrated

temperature and precipitation during these three pe-

riods for a total of nine potentially relevant performance

metrics. Again, for averaging periods six months or less,

comparison of these nine metrics between models and

observations is inconclusive. Even on the nine-month

time scale, there is no definitive bias that explains why

the all of the simulations underpredict drought extent in

the United States and Mexico. On the nine-month time

scale, most of the simulations have too many periods

that are both warmer and drier than the average. If this

were the controlling factor, the simulations would ex-

ceed the observed drought area. The amount of the

precipitation deficit during these warm, dry nine-month

periods is not systematically lower for the simulations

than for the observations, although it is for some of

them. Similarly, the simulated excess temperature dur-

ing these periods can be both higher and lower than

observed. Nonetheless, it is instructive to examine these

metrics in further detail. In Table 3, a relative rank of

each model is shown ordered such that the best model on

the drought area index described above is first and the

worst is last. The rank for the average nine-month pre-

cipitation deficit is defined such that the first model has

FIG. 5. Scatterplot showing the relationship between the average area of the continental United States and Mexico experiencing drought

and the pattern correlation between the observed and simulated spatial distribution of the percentage of time experiencing drought. Both

(left) centered and (right) uncentered are shown. The analysis period is 1950–99. (top) Drought conditions (PDSI , 22) and (bottom)

extreme drought conditions (PDSI , 24).
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the lowest amount of precipitation during the wet and

dry periods. Additionally, we note by the word ‘‘drier’’

or ‘‘wetter’’ if a particular model’s deficit is lower or

higher than the observations. Similarly for the temper-

ature surplus, the warmest models are assigned the lowest

ranks and the words ‘‘warmer’’ or ‘‘cooler’’ are used to

describe each model relative to the observations during

these periods. In addition to being warm and dry more

often than the observation, nearly all the models are

warmer on average during these periods than the ob-

servations. We note that the 5 of the best 6 models ranked

by the drought area index are both warmer and drier than

the observations. We also note that the worst performers

tend to be biased wet with 9 of the bottom 11 models

described accordingly. But there are some notable in-

consistencies in this ranking. For instance, the Canadian

Centre for Climate Modelling and Analysis (CCCma)

Coupled General Circulation Model, version 3.1

(CGCM3.1_t63) is biased both wet (and warm), yet

performs well in three of the four drought metrics rel-

ative to other models. And L’Institut Pierre-Simon

Laplace Coupled Model, version 4 (IPSL CM4), which is

both warmer and drier than the observations, performs

very poorly in all four drought metrics. Additionally,

interpretation of the relative ranks for the warm or dry

metrics in the context of model performance in simu-

lating drought is not very informative. We are left to

conclude that the nine-month warm and dry period av-

erage precipitation deficit and temperature surplus are

only suggestive of model performance in simulating the

PDSI and that some other, perhaps nonlinear, combi-

nation of precipitation and temperature variations con-

trols the balance between evaporation and precipitation.

3. Drought metrics and projections of the future

Projections of future drought statistics through the

PDSI can be expressed in a number of ways. A change in

the mean climatology is reflected as a change in the time-

averaged value of PDSI. The variations of PDSI around

such an altered climatology are also important. The PDSI

metrics described in the previous section are useful to

describe these altered drought statistics. The time-

dependent metrics depicted in Figs. 3a,b, the average area

experiencing moderate drought or extreme drought,

provides one measure of projected drought severity. The

spatially dependent map of the time spent in moderate

drought or extreme drought, as depicted for the present-

day observations in Figs. 4a,b, is another such measure.

The correction factors applied to the simulated pre-

cipitation and temperature generally improve the models’

ability to simulate the four PDSI metrics defined in the

previous section averaged over the reference period

1950–99. The correction also significantly amplifies the

TABLE 3. Relative order of 20 bias-corrected climate models ranked by their ability to simulate observed PDSI metrics and precipitation

deficits and temperature surpluses during warm and dry periods over the 1950–99 period. One is the best model and 20 is the worst model.

The measured region is confined to the land areas of the continental United States and Mexico. Warmer means warmer than observed;

similarly for colder, drier, and wetter.

Surface air

temperature

deficit rank

Precipitation

deficit rank

Area metric

moderate

drought

Area metric

extreme

drought

Correlation

metric moderate

drought

Correlation

metric extreme

drought

CSIRO Mk3.0 9 Warmer 3 Drier 1 1 10 3

PCM 13 Warmer 4 Drier 2 3 3 1

GFDL CM2.0 10 Warmer 7 Drier 3 8 13 11

GFDL CM2.1 2 Warmer 1 Drier 4 2 11 12

CCCma

CGCM3.1_t63

8 Warmer 14 Wetter 5 6 16 6

ECHAM5 6 Warmer 6 Drier 6 5 12 8

CCSM3 4 Warmer 17 Wetter 7 4 8 4

MRI CGCM2.3.2a 19 Colder 8 Drier 8 11 4 5

FGOALS-g1.0 1 Warmer 13 Wetter 9 10 2 9

CCCma CGCM3.1 7 Warmer 18 Wetter 10 7 9 7

BCCR-BCM2.0 17 Colder 16 Wetter 11 13 14 10

CNRM-CM3 14 Warmer 15 Wetter 13 12 15 19

HadCM3 3 Warmer 11 Wetter 14 15 7 14

ECHO-G 11 Warmer 20 Wetter 15 16 6 13

HadGEM1 5 Warmer 10 Wetter 16 14 5 15

INMCM3 16 Warmer 9 Wetter 17 17 17 16

IPSL CM4 15 Warmer 5 Drier 18 18 18 18

MIROC(medres) 18 Colder 2 Drier 19 19 19 20

MIROC(hires) 20 Colder 19 Wetter 20 20 20 17
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late twentieth century and entire twenty-first century

trends. In Fig. 3, a positive trend in the multimodel mean

moderate drought areal extent begins around 1975. For

extreme drought areal extent, a trend in the multimodel

mean begins to appear around 2000. Detection and at-

tribution of a human influence on these trends at this

spatial scale is unlikely at the present time because of

a large natural variability. In fact, inspection of the re-

sults in Fig. 3 considering only the observed data does

not suggest anything particularly unusual about the re-

cent past compared to the early portion of the twentieth

century. However, if the future real world bears any

resemblance to this ensemble of projections, detection

and attribution of a human influence on this regional

measure of drought could be expected by the middle of

the twenty-first century, if not considerably earlier.

Figure 6a shows the projected multimodel average value

of PDSI over North America at the end of the twenty-

first century under the SRES A1B forcing scenario. In

this projection, what is considered severe to extreme

drought conditions would be the normal climatological

state over much of the continental United States and

Mexico. In fact, roughly two-thirds of the area in this

region’s normal state would be considered moderate

drought conditions today and a tenth would be consid-

ered extreme drought conditions. These fractions refer

to a change in the drought climatology, and the average

fractional area actually in moderate drought or extreme

drought conditions as pictured in Figs. 3a,b could be

different. Interestingly, this fraction is also about two-

thirds for moderate drought conditions but is about a

quarter for extreme drought conditions at the end of

this century. We interpret that for those regions where

drought conditions become the norm, not having drought

is the unusual event. Likewise, extreme drought is not as

rare an event as it is currently. Even in much of Canada,

where precipitation is projected to increase by all

models (Karl et al. 2009), moderate drought or mild

drought conditions are projected to be the normal

state. Here and perhaps elsewhere, the increased pre-

cipitation does not offset the increase in evapotrans-

piration due to warmer surface temperature. This leads

to a reduction in soil moisture that is reflected in neg-

ative values of PDSI.

Multimodel projections of the future can be made more

credible if objective measures of model performance can

be used to weight each model’s contribution to the mul-

timodel mean. The variations in model rank shown in

Table 3 reveal that a single performance metric does not

suffice to sort out the good from the bad models. Any

weighting scheme chosen to construct a multimodel mean

is arbitrary and different schemes would certainly differ in

the details. Santer et al. (2009) ranked climate models by

70 different metrics both parametrically and nonpara-

metrically for a detection and attribution study of at-

mospheric moisture trends. Although they found it

impossible to identify any model ‘‘best’’ in all categories,

it was possible to identify certain models that could be

judged superior when considering the entire set of

metrics. For projection studies, consideration of metrics

based on the quantities to be predicted is fair game.

Hence, the area and correlation metrics in Table 3 can

be used to rank models for their usefulness in projecting

future PDSI drought statistics. As the uncentered cor-

relation provides marginally more information for

drought conditions than the centered correlation, we

compute the model ranking based on the correlations

with the mean retained. The reader should regard this

choice as an arbitrary one to illustrate the imple-

mentation of ranking for climate change projection

purposes. Following Santer et al. (2009), we normalize

the metrics to use them as the basis for both parametric

and nonparametric ranks in Table 4. The nonparametric

score for a given model is determined by simply aver-

aging the model rank for each of the four metrics shown

in columns 2–5 of Table 3. The parametric score is de-

termined by the average of the four normalized metrics

themselves shown in columns 3–6 of Table 4.

Normalization of the errors allows us to consider the

different categories of errors with equal weighting in the

construction of the parametric rank. Since the errors are

not necessarily regularly distributed, a model is strongly

penalized in a parametric ranking if it performs poorly

on a single metric. The nonparametric ranking also pe-

nalizes such a model, but with a different weight. In fact,

the parametric and nonparametric rank shown in the

first two columns of Table 4 are very similar. The top five

best performing models according to parametric rank

are 1) CSIRO Mk3.0, 2) PCM, 3) Community Climate

System Model, version 3 (CCSM3), 4) Geophysical

Fluid Dynamics Laboratory Climate Model version 2.1

(GFDL CM2.1), and 5) ECHAM5. (Actually, the mean

model would be fourth on the list but we will exclude it

from this part of the discussion.) The worst five models

are 19) MIROC(hires), 18) MIROC, medium-resolution

version [MIROC(medres)], 17) IPSL CM4, 16) INMCM3,

and 15) Centre National de Recherches Météorologiques

Coupled Global Climate Model, version 3 (CNRM-CM3).

Nonparametric ranking changes the order only slightly;

see Table 4.

A selection of only the top five models in the con-

struction of a mean model can provide a significant im-

provement in these metrics over the inclusion of all of

the models in a mean model. For the top five (corrected)

models, using the parametric ranking, the 1950–99 av-

erage continental U.S. and Mexico moderate drought
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FIG. 6. (a) Projected multimodel mean PDSI averaged over the period 2089–98 for North

America from 19 CMIP3 models driven by the SRES A1B forcing scenario. (b) Intermodel

standard deviation of PDSI for this same period and forcing scenario.
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area is 12.4% and extreme drought area is 1.9%. From

Table 2, this compares to values of 9.1% and 1.0%, re-

spectively, when all models are included in the mean.

The observed values, also from Table 2, are 16.9% and

3.4%.

A principal motivation for comparing the models

against these metrics of simulating the past is to improve

confidence in projections of future drought statistics. In

fact, all models project increases in the severity of future

North American drought, however the amount and

distribution are very sensitive to the particular selection

of models used in the projection. For instance, an end-

of-century SRES A1B forcing projection of PDSI using

all models indicates significantly more severe drought

conditions than a projection using only the top 5 PDSI

models described above. However, the reduction in

projected future drought severity by choosing these top

5 PDSI models can be misleading as there is a strong

correlation between models’ climate sensitivity to CO2

and their ability to replicate the four drought metrics.

Figure 7 shows the annual mean surface air temper-

ature over the continental United States and Mexico

subject to the IPCC 13-point filter averaged over all

models, the top five models, and bottom five models, as

well as the observations. The top five PDSI models,

which happen to project less future drought area, also

project significantly lower future temperatures over the

region of interest than the average of all models, while

the bottom five models project temperatures higher

than the average of all models. Table 5 shows the

temperature increases over the continental United States

and Mexico for each model compared against their PDSI

metric rankings. From this table we note that the average

surface air temperature increase of the top five PDSI

models is a 0.8 K lower-than-average increase of all

models for the end of the twenty-first century relative to

the beginning of the twentieth century. We also note

that the average surface air temperature increase of the

bottom five PDSI models is 0.9 K higher than the av-

erage of all models. If this relationship between model

TABLE 4. Normalized drought metrics with parametric and nonparametric scores for the 19 models in this study and the mean model.

Associated parametric and nonparametric relative ranking are shown in parenthesis. The mean model is unranked.

Nonparametric

metric

Parametric

metric

Area

metric 2

Area

metric 4

Correlation

metric 2

Correlation

metric 4

PCM 2.25(1) 0.87(2) 0.95 2.30 0.23 0.00

CSIRO Mk3.0 3.75(2) 0.86(1) 0.62 1.69 0.79 0.34

CCSM3 5.75(3) 1.39(3) 1.87 2.61 0.65 0.45

Mean model 6.00 1.56 2.39 3.71 0.00 0.16

MRI CGCM2.3.2a 7.00(4) 1.66(6) 1.92 3.90 0.30 0.52

GFDL CM2.1 7.25(5) 1.63(4) 1.59 2.28 0.85 1.80

FGOALS-g1.0 7.50(6) 1.72(9) 2.03 3.79 0.14 0.93

ECHAM5 7.75(7) 1.63(5) 1.86 2.89 0.94 0.84

CCCma CGCM3.1 8.25(8) 1.66(7) 2.15 3.02 0.72 0.75

CCCma CGCM3.1_t63 8.25(9) 1.68(8) 1.64 3.00 1.46 0.62

GFDL CM2.0 8.75(10) 1.96(10) 1.45 3.67 0.96 1.77

BCCR-BCM2.0 12.00(11) 2.28(11) 2.39 4.15 1.12 1.45

HadCM3 12.50(12) 2.42(12) 2.78 4.41 0.61 1.86

ECHO-G 12.50(13) 2.47(13) 2.94 4.48 0.60 1.84

HadGEM1 12.50(14) 2.49(14) 2.98 4.30 0.39 2.31

CNRM-CM3 15.00(15) 2.74(15) 2.69 4.14 1.17 2.97

INMCM3 16.75(16) 3.08(16) 3.38 4.81 1.81 2.33

IPSL CM4 18.00(17) 3.35(17) 3.64 4.82 2.26 2.69

MIROC(medres) 19.00(18) 3.75(18) 4.14 5.07 2.54 3.24

MIROC(hires) 19.25(19) 4.08(19) 4.45 5.08 4.24 2.55

FIG. 7. Observed and corrected model surface air temperatures

used in the calculation of PDSI averaged over the continental

United States and Mexico. The annual average was further subject

to the 13-point filter used in the IPCC AR4. Note that the 1950–99

average is the same for all four curves because of the correction

period described in the text.
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climate sensitivity and drought metric skill is real, a re-

lationship between long term climate sensitivity and

variability on the PDSI time scale must also be real. A

relationship between temperature or precipitation var-

iability on the PDSI time scale (approximately nine

months) and drought metric skill (see Table 3) is not

definitely supported, although these numbers are sug-

gestive for certain models. We are left to cautiously

conclude that this correlation between climate sensitiv-

ity and model performance may be a sampling error due

to the small size of the ensemble of CMIP3 models and

should be considered coincidental.

Because of the strong relationship between evapo-

transpiration and air temperature noted earlier, compar-

ing PDSI statistics between models of different average

temperatures increases projection uncertainty. In a sta-

tionary climate, drought statistics are determined only by

climate variability. In the nonstationary climate consid-

ered in projections, drought is determined both by climate

variability and by the difference in the mean climate from

that of the reference period. There is a wide range of

temperature responses illustrated in Table 5. The in-

termodel standard deviation of projected PDSI from all

19 CMIP3 models at the end of the twenty-first century

under SRES A1B forcing is shown in Fig. 6b and ranges

from 1.5 to 3.5 over North America. Much of this

variation is due to mean temperature differences be-

tween models at the end of the century.

The surface air temperature sampling error incurred

by choosing a subset of models based on performance on

the four PDSI metrics could bias the projection for

similar reasons. For the average of the top five PDSI

models, the projected future drought is less at the end of

the twenty-first century than when choosing all models

because the average temperature is so much lower. This

source of bias and uncertainty in highly derived quan-

tities like PDSI can be reduced by slightly changing the

nature of the projection. Typically, projections are framed

by a time interval—that is, ‘‘How does some aspect of the

climate change by the end of the twenty-first century

under a specified forcing?’’ However, a related question

may also be posed: ‘‘How does that aspect of the climate

change when the temperature reaches a specified level?’’

This may be a more appropriate question in climate

change impacts applications such as the present study

(Clark et al. 2010). The practical difference is that models

of differing climate sensitivities are analyzed over dif-

ferent periods rather than over the same one.

Figure 8a shows the PDSI from all 19 CMIP3 models

averaged over the decade when each model’s global

mean surface air temperature first increases 2.5 K rela-

tive to the 1900–09 average. (Note: the choice of 12.5 K

TABLE 5. Intermodel comparison of projected temperature changes (K) over the continental United States and Mexico to combined

nonparametric ranking of four drought metrics. The third column shows the projected temperature change is difference between the 2089–

98 and the 1900–09 averages. The numbers in parentheses are the order of the models in terms of amount of temperature change from

lowest to highest. The last column shows the date when each model’s running decadal mean globally averaged surface air temperature

change first reaches 12.5 K over its 1900–09 value.

Nonparametric rank

Surface air

temperature difference (K)

Year that surface air

temperature increases 2.5 K

PCM 1 2.8 (2) 2085

CSIRO Mk3.0 2 2.4 (1) 2110

CCCma CGCM3.1_t63 3 4.4 (11) 2038

MRI CGCM2.3.2a 4 3.3 (4) 2065

GFDL CM2.1 5 4.4 (10) 2057

FGOALS-g1.0 6 3.7 (5) 2069

ECHAM5 7 4.2 (9) 2057

CCSM3 8 3.8 (7) 2046

CCCma CGCM3.1_t47 9 4.4 (12) 2048

GFDL CM2.0 10 3.3 (3) 2089

BCCR-BCM2.0 11 3.7 (6) 2078

HadCM3 12 4.8 (15) 2059

HadGEM1 13 5.0 (16) 2054

ECHO-G 14 4.8 (14) 2059

CNRM-CM3 15 4.5 (13) 2045

INMCM3 16 4.0 (8) 2050

IPSL CM4 17 5.6 (18) 2049

MIROC(medres) 18 5.3 (17) 2054

MIROC(hires) 19 6.0 (19) 2029

Mean model 4.2

Top five models 3.4

Bottom five models 5.1
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is determined by the maximum warming of the model

with the lowest climate sensitivity, which in the present

study is CSIRO Mk3.0.) The date of this occurrence is

listed in Table 5 for each model and ranges from 2038 to

2110. A running decadal mean was calculated for each

model and compared to its 1900–09 mean temperature.

For models with more than a single realization, the

numbers in Table 5 are the average over realizations.

However, each realization of each model was analyzed

separately and the average performed over the 12.5 K

date as a final step. As was the case when considering the

end of the twenty-first century, widespread drying is

projected over much of the continent when the global

mean increases by 2.5 K. Severe drought conditions are

projected to be the normal state in southern Mexico

while moderate drought conditions are projected for most

of the western United States. For the continental United

States and Mexico, about 35% of the region’s climatology

is moderate drought and about 5% is extreme drought

in this projection. Figure 8b shows that the intermodel

standard deviation of this projection of PDSI ranges

from about 0.5 to 2. Two sources of intermodel varia-

tions contribute to this projection uncertainty. The first

are the intermodel differences in the projected future

changes in precipitation. The second, and perhaps smaller

since the global mean changes are identical, are the

differences between models in the spatial pattern of

warming at the specified global surface air temperature

FIG. 8. (a) All-model average value of PDSI when the global average surface air temperature has increased 2.5 K over its 1900–09 mean

value, (b) intermodel standard deviation of the values shown in (a),(c) all-model average value of PDSI for the decade centered at 2070,

and (d) intermodel standard deviation of the values shown in (c).
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change of 12.5 K. As a comparison, Fig. 8c and shows

the PDSI and its intermodel standard deviation from all

19 CMIP3 models averaged over the decade centered at

2070, which is when the mean model change is about

12.5 K (from Fig. 7). This estimate of projected PDSI is

slightly higher, indicating that the individual models’

changes do not combine in a linear fashion. The un-

certainty in this estimate is slightly larger over most of

the continent although actually a bit larger over the

Canadian Rockies. Comparison with Figs. 6a,b, when

the mean model global temperature is only 0.5 K higher,

indicates both how rapidly multimodel PDSI might

change toward the end of the century and how much

more uncertainty in that estimate increases as due to the

uncertainty in climate sensitivity.

The widespread drying projected by the all-model av-

erage in Fig. 8a is lessened when only the top five PDSI

models are considered as in Fig. 9a. In this projection at

12.5 K, southern Mexico remains in severe drought but

the drought in the western United States is reduced. PDSI

is increased (indicating a reduction in drought) by about

0.5 in this region. Hence, the fractional area of the con-

tinental United States and Mexico where the normal state

is moderate drought is about halved. The fractional area

where the normal state is extreme drought does not

change. Conversely, drought in this region is enhanced

by considering the bottom five PDSI models as in Fig.

9b. However, these differences between the best and

worst models are not statistically significant at the 90%

confidence level according to a Student’s t test using the

intermodel variance calculated from all models (Fig. 8b)

as estimates of the sample variances.

4. Discussion

We present an analysis of the ability of output from

the IPCC AR4 climate models archived in the CMIP3

database to reproduce observed PDSI statistics over

North America, particularly Mexico and the continental

United States. Using the period 1950–99 as the base

climatology, we find that none of the models are able to

reproduce the frequency, severity, or extent of observed

moderate drought conditions (PDSI , 22) or extreme

drought conditions (PDSI , 24). Application of a mul-

tiplicative correction factor to the models’ monthly

temperature and precipitation fields to remove the

temperature and precipitation bias over this period

helps some of the models. We define six metrics of

model performance based on drought severity as well as

temporal and spatial measures applied over the base

period. However, all models produce too little moderate

and extreme drought in this region, even after correction

of the biases. The difference in the ability to reproduce

observations varies greatly between the 19 models con-

sidered with two or three models performing nearly sat-

isfactorily, four models failing spectacularly, and the

remainder falling somewhat between these two extremes.

Generally, the models simulate the amount of moderate

drought conditions better than extreme drought condi-

tions. However, the models tend to simulate the pattern

of moderate drought conditions worse than for extreme

drought conditions. A weak correlation between models’

abilities to simulate the temporally based metrics and the

spatially based metrics is found. However, there appears

to be little or no correlation between model skill in re-

producing these four drought metrics and model skill in

reproducing the covariance of temperature and pre-

cipitation as well as the individual variances of temper-

ature and precipitation. The absence of a connection

between these second-order measures of variability and

the higher-order variations quantified by PDSI is un-

explained.

All models, regardless of their ability to simulate the

base-period drought statistics, project significant future

increases in drought frequency, severity, and extent over

the course of the twenty-first century under the SRES

A1B emissions scenario. Using all 19 models, the aver-

age state in the last decade of the twenty-first century is

projected under the SRES A1B forcing scenario to be

conditions currently considered severe drought (PDSI ,

23) over much of continental United States and extreme

drought (PDSI , 24) over much of Mexico. A significant

amount of the intermodel uncertainty in this projection

can be traced to differences in the models’ climate sen-

sitivity. The models with the largest temperature increase

exhibit the largest increases in drought extent and se-

verity because of the strong dependence of evapotrans-

piration on surface air temperature.

Periods of drought intensity comparable to the massive

droughts of the 1930s or 1950s are replicated in the sim-

ulated twentieth century by the corrected models, albeit

less frequently than observed. By the end of the twenty-

first century, this condition becomes the normal one.

Using the four of the drought metrics, we have con-

structed both parametric and nonparametric model ranks

to form a simple weighting scheme as a basis for im-

proving confidence in multimodel projections. A pro-

jection using only the best models based on their

performance in reproducing the four PDSI metrics leads

to serious sampling errors because of an apparently co-

incidental relationship between model climate sensitiv-

ity and their ability to simulate these drought statistics.

This bias may be removed by considering the PDSI

change at a specified amount of temperature change

rather than over a specific future time interval.

Such a projection is less uncertain as local intermodel
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temperature differences are much reduced. At a 2.5 K

global increase in surface air temperature relative to

the 1900–09 average, an all-model projection exhibits

moderate drought conditions over most of the western

United States and severe drought over southern Mexico

as the mean climatological state. Using the best five

models, as determined by a nonparametric ranking of

the models against the four selected PDSI metrics, leads

FIG. 9. (a) PDSI averaged over the top five PDSI models when the global average surface air

temperature has increased 2.5 K over its 1900–09 mean value. (b) As in (a) except for the

bottom five PDSI models.
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to a projection with a moderate reduction in the western

U.S. drought. Usage of the five worst models increases

the projected drought severity in this region. However,

these differences are not highly statistically significant.

The response of PDSI to future temperature increases

is very robust and indicates that in many regions in-

creased evapotranspiration will lead to decreases in soil

moisture regardless of how mean precipitation changes.

This sensitivity calls into question the usefulness of the

four PDSI performance metrics presented here in making

projections of future drought statistics. The PDSI metrics

are a measure of how well the models reproduce current

high-order variability and covariability of precipitation

and temperature. Of more importance to future pro-

jections of PDSI and other measures of soil moisture is the

amount of warming. The true climate sensitivity remains

very uncertain and is not constrained by these metrics.
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APPENDIX A

The Palmer Drought Severity Index

The Palmer drought severity index (PDSI) assesses

the total environmental moisture status. It incorporates

information on antecedent precipitation, moisture sup-

ply, moisture demand, and soil moisture into a hydro-

logic accounting system (Palmer 1965; Heim 2002). The

PDSI is a dimensionless index that measures both drought

and wet spell conditions. Moisture demand (evapotrans-

piration) is estimated from monthly mean temperature

and solar zenith angle using a Thornthwaite model. The

two-layer model used for soil moisture computations

assumes moisture is not transferred to the bottom layer

until the top layer is saturated, runoff does not occur

until both soil layers are saturated, and all of the pre-

cipitation occurring in a month is utilized during that

month to meet evapotranspiration and soil moisture

demand or be lost as runoff. The model, as originally

designed by Palmer, does not account for precipitation

that may fall as snow and, therefore, does not enter into

the hydrologic computations during the month it occurs.

It also assumes moisture can always freely move be-

tween the soil moisture layers—that is, the ground is

never frozen. Alley (1984) discussed these limitations

and others, including how the Palmer model and water

balance models in general treat the distribution of pre-

cipitation and evapotranspiration within a month or

week and how they fail to consider seasonal or annual

changes in vegetation cover and root development.

Several authors (referenced in Heim 2002) noted that

the PDSI, as originally developed by Palmer, treats the

drought problem in semiarid and dry subhumid climates

where local precipitation is the sole or primary source

of moisture and that it may not be applicable to other

areas, that the drought severity classes were arbitrarily

assigned, and that the normalization process Palmer

used may not be adequate to allow direct spatial com-

parisons. The backstepping process used to determine

the beginning and ending of droughts and wet spells is

dependent on antecedent and future moisture condi-

tions, which makes it best suited for nonoperational

computations.

Some of these concerns have been addressed in sub-

sequent modifications of the Palmer model. For exam-

ple, the enhanced Palmer drought index (EPDI) was

created for cold climate conditions in Alberta, Canada,

and incorporates snowpack, mountain precipitation,

stream flow, and soil moisture conditions (Agriculture

and Agri-Food Canada 2002). The self-calibrating

Palmer drought severity index (SC-PDSI) automatically

calibrates the behavior of the index at any location by

replacing empirical constants in the index computation

with dynamically calculated values, thus making it more

spatially consistent (Wells et al. 2004). A probability

factor was incorporated into the backstepping process to

enable a more accurate assessment of drought termi-

nation in operational environments (Heddinghaus and

Sabol 1991). In spite of the criticisms, the PDSI remains

a popular model because it addresses both sides of the

drought equation (water supply and water demand) and

is easily computed from readily available variables.

The operational PDSI utilized by NOAA/NCDC used

in this study incorporates the probability factor de-

veloped by Heddinghaus and Sabol (1991) and requires

monthly precipitation and mean temperature as input.

Drought is classified into the following categories: in-

cipient (20.5 $ PDSI . 21.0), mild (21.00 $ PDSI .

22.00), moderate (22.00 $ PDSI . 23.00), severe

(23.00 $ PDSI . 24.00), and extreme (24.00 $ PDSI).
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APPENDIX B

Temperature and Precipitation Observations

The observed data used here consist of 5360 temper-

ature and 7544 precipitation measurements between 158

and 528N, the study area extending northward across the

Canada–United States border to eliminate ‘‘edge’’ ef-

fects. The U.S. and Canadian data were from their re-

spective national archives (the National Climatic Data

Center and Environment Canada) while the Mexican data

were provided by A. Douglas (Creighton University, 2008,

personal communication). All temperature series were

adjusted using the pairwise approach of Menne and

Williams (2009) to account for historical changes in

station location, instrumentation, and observing practice.

The irregularly spaced station data were interpolated to

a half degree latitude–longitude grid using a three-step

approach known as climatologically aided interpolation

(Willmott and Robeson 1995). The first step involved

gridding the 1961–90 base-period normals using trivariate

thin plate smoothing splines that employed latitude, lon-

gitude, and elevation as predictors (as in Hutchinson et al.

2009). The second step involved gridding the temperature

and precipitation anomalies in each year and month for

the period 1895–2005 using the inverse distance weighting

approach of Willmott et al. (1985). Finally, the gridded

anomalies were added to the gridded climatologies in

each year and month to create the actual temperature and

precipitation grids in each year and month.
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