Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Impacts of Climate Change on Biodiversity, Ecosystems, and Ecosystem Services Technical Input to the 2013 National Climate Assessment

Impacts of Climate Change on Biodiversity, Ecosystems, and Ecosystem Services Technical Input to the 2013 National Climate Assessment

KEY FINDINGS Biodiversity and ecosystems are already more stressed than at any comparable period of human history. Climate change almost always exacerbates the problems caused by other environmental stressors including: land use change and the consequent habitat fragmentation and degradation; extraction of timber, fish, water, and other resources; biological disturbance such as the introduction of non-native invasive species, disease, and pests; and chemical, heavy metal, and nutrient pollution. As a corollary, one mechanism for reducing the negative impacts of climate change is a reduction in other stressors. Climate change is causing many species to shift their geographical ranges, distributions, and phenologies at faster rates than previously thought. Changes in terrestrial plant and animal species ranges are shifting the location and extent of biomes, and altering ecosystem structure and functioning. These rates vary considerably among species. Terrestrial species are moving up in elevation at rates 2 to 3 times greater than initial estimates. Despite faster rates of warming in terrestrial systems compared to ocean environments, the velocity of range shifts for marine taxa exceeds those reported for terrestrial species. Species and populations that are unable to shift their geographic distributions or have narrow environmental tolerances are at an increased risk of extinction. There is increasing evidence of population declines and localized extinctions that can be directly attributed to climate change. Ecological specialists and species that live at high altitudes and latitudes are particularly vulnerable to climate change. Overall, the impacts of climate change are projected to result in a net loss of global biodiversity and major shifts in the provision of ecosystem services. For example, the range and abundance of economically important marine fish are already changing due to climate change and are projected to continue changing such that some local fisheries are very likely to cease to be viable, whereas others may become more valuable if the fishing community can adapt. Range shifts will result in new community assemblages, new associations among species, and promote interactions among species that have not existed in the past. Changes in the spatial distribution and seasonal timing of flora and fauna within marine, aquatic, and terrestrial environments can result in trophic mismatches and asynchronies. Novel species assemblages can also substantially alter ecosystem structure and function and the distribution of ecosystem services. Changes in precipitation regimes and extreme events can cause ecosystem transitions, increase transport of nutrients and pollutants to downstream ecosystems, and overwhelm the ability of natural systems to mitigate harm to people from these events. Changes in extreme events affect systems differentially, because different thresholds are crossed. For example, more intense storms and increased drought coupled with warming can shift grasslands into shrublands, or facilitate domination by other grass types (for example, mixed grass to C-4 tallgrass). More heavy rainfall also increases movement of nutrients and pollutants to downstream ecosystems, restructuring processes, biota, and habitats. As a consequence, regulation of drinking water quality is very likely to be strained as high rainfall and river discharge lead to higher levels of nitrogen in rivers and greater risk of waterborne disease outbreaks. S-2 Impacts of Climate Change on Biodiversity, Ecosystems, and Ecosystem Services | Executive Summary Technical Input to the 2013 National Climate Assessment Changes in winter have big and surprising effects on ecosystems and their services. Changes in soil freezing, snow cover, and air temperature have affected carbon sequestration, decomposition, and carbon export, which influence agricultural and forest production. Seasonally snow-covered regions are especially susceptible to climate change as small changes in temperature or precipitation may result in large changes in ecosystem structure and function. Longer growing seasons and warmer winters are enhancing pest outbreaks, leading to tree mortality and more intense and extensive fires. For winter sports and recreation, future economic losses are projected to be high because of decreased or unreliable snowfall. The ecosystem services provided by coastal habitats are especially vulnerable to sea-level rise and more severe storms. The Atlantic and Gulf of Mexico coasts are most vulnerable to the loss of coastal protection services provided by wetlands and coral reefs. Along the Pacific coast long-term erosion of dunes due to increasing wave heights is projected to be an increasing problem for coastal communities. Beach recreation is also projected to suffer due to coastal erosion. Other forms of recreation are very likely to improve due to better weather, and the net effect is likely a redistribution of the industry and its economic impact, with visitors and tourism dollars shifting away from some communities in favor of others. Climate adaptation has experienced a dramatic increase in attention since the last National Climate Assessment and become a major emphasis in biodiversity conservation and natural resource policy and management. Federal and State agencies are planning for and integrating climate change research into resource management and actions to address impacts of climate change based on historical impacts, future vulnerabilities, and observations on the ground. Land managers have realized that static protected areas will not be sufficient to conserve biodiversity in a changing climate, requiring an emphasis on landscape-scale conservation, connectivity among protected habitats, and sustaining ecological functioning of working lands and waters. Agile and adaptive management approaches are increasingly under development, including monitoring, experimentation, and a capacity to evaluate and modify management actions. Risk-based framing and stakeholder-driven scenario planning will be essential in enhancing our ability to respond to the impacts of climate change. Climate change responses employed by other sectors (for example, energy, agriculture, transportation) are creating new ecosystem stresses, but also can incorporate ecosystem- based approaches to improve their efficacy. Ecosystem-based adaptation has emerged as a framework for understanding the role of ecosystem services in moderating climate impacts on people, although this concept is currently being used more on an international scale than within the United States. Ecological monitoring efforts need to be improved and better coordinated among Federal and State agencies to ensure that the impacts of climate change are adequately observed as well as to support ecological research, management, assessment, and policy. As species and ecosystem boundaries shift to keep pace with climate change, improved and better-integrated research, monitoring, and assessment efforts will be needed at national and global scales. Existing monitoring networks in the United States are not well suited for detecting and attributing the impacts of climate change to the wide range of affected species at the appropriate spatio-temporal scales.

Fair Use OK

DOWNLOAD FILE — PDF document, 5,742 kB (5,880,232 bytes)