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Remotely sensed vegetation indices are widely used to detect greening and browning trends; especially the
global coverage of time-series normalized difference vegetation index (NDVI) data which are available from
1981. Seasonality and serial auto-correlation in the data have previously been dealt with by integrating the
data to annual values; as an alternative to reducing the temporal resolution, we apply harmonic analyses and
non-parametric trend tests to the GIMMS NDVI dataset (1981–2006). Using the complete dataset, greening
and browning trends were analyzed using a linear model corrected for seasonality by subtracting the seasonal
component, and a seasonal non-parametric model. In a third approach, phenological shift and variation in
length of growing season were accounted for by analyzing the time-series using vegetation development
stages rather than calendar days. Results differed substantially between the models, even though the input
data were the same. Prominent regional greening trends identified by several other studies were confirmed
but the models were inconsistent in areas with weak trends. The linear model using data corrected for
seasonality showed similar trend slopes to those described in previous work using linear models on yearly
mean values. The non-parametric models demonstrated the significant influence of variations in phenology;
accounting for these variations should yield more robust trend analyses and better understanding of
vegetation trends.
ageningen, The Netherlands.
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1. Introduction

Vegetation, as themain component of the terrestrial biosphere, is a
crucial element in the climate system (Foley et al., 2000) and there is
high confidence that global warming is now strongly affecting the
terrestrial biosphere (IPCC, 2007). Vegetation status is commonly
used in assessments of productivity of natural and agricultural lands
(Cai & Sharma, 2010; Sims et al., 2008; Yu et al., 2009) and a declining,
or browning, trend is considered to indicate land degradation
(Metternicht et al., 2010; Wessels et al., 2007; Zika & Erb, 2009).
Normalized Difference Vegetation Index (NDVI), based on red and
near-infrared reflectance (Tucker, 1979), is strongly correlated with
vegetation productivity (Prince & Tucker, 1986; Tucker et al., 1985)
and trends in NDVI can thus be used as a proxy for greening or
browning (Alcaraz-Segura et al., 2009; Bai et al., 2008). However, it is
difficult to attribute cause-and-effect to vegetation trends because
variations in vegetation productivity are driven by various factors,
including climatic cycles and management practices (Evans &
Geerken, 2004; Lupo et al., 2001; Wessels et al., 2007).
NDVI trends have been used for many purposes, including as-
sessment of ecological response to global warming (Pettorelli et al.,
2005), phenological change (White et al., 2009), crop status (Tottrup
& Rasmussen, 2004), land cover change (Hüttich et al., 2007) or
desertification (Symeonakis & Drake, 2004). For example, systematic
greening has been found in the Sahel (Anyamba & Tucker, 2005;
Heumann et al., 2007; Olsson et al., 2005), most likely due to climatic
variations and recovery from severe droughts (Herrmann et al., 2005;
Nicholson, 2000). The effects of human-induced land degradation are
highlighted by some studies (Hein & de Ridder, 2006) and disputed by
others (Prince et al., 2007; Seaquist et al., 2008). At the global scale,
Bai et al. (2008) combined NDVI trends with rain-use efficiency as a
proxy of degradation. Most analyses established trends by linear
regression of NDVI, integrated annually (Bai et al., 2008) or seasonally
(Eklundh & Olsson, 2003) but it is not always clear whether a fitted
slope coefficient differs significantly from zero (de Beurs & Henebry,
2004) or what may be the effect of integration by calendar year in
the southern hemisphere where growing seasons straddle the year
end (Wessels, 2009).

Trends and inter-annual variability in vegetation phenology – the
timing of seasonal activities of plants – affect the exchange of car-
bon, water and energy between the vegetation and the atmosphere
(Baldocchi et al., 2001). A range of studies using station observations
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of phenology and temperature has shown a widespread trend of
earlier onset of greening and longer growing seasons, especially in
the Northern Hemisphere (Menzel et al., 2006; Rosenzweig et al.,
2007; Sparks et al., 2009); these findings are substantiated by satellite
observations since the early 1980s (Karlsen et al., 2007; Myneni et al.,
1997; Tucker et al., 2001; Zhou et al., 2001) and are in line with the
increase in net primary production suggested by modeling (Nemani
et al., 2003). Longer and warmer growing seasons increase evapo-
transpiration and drought stress (Barber et al., 2000; Zhang et al.,
2009), wildfire incidence (Westerling et al., 2006) and intensity of
carbon sequestration (Goulden et al., 1996; White et al., 1999).
Therefore, a decrease in the growth rate within the growing season
might be a more sensitive measure than total production as an
indicator of stress and soil degradation. Unfortunately, information
on growth rate, or intensity, is concealed by integration of NDVI data
to annual values.

When complete NDVI time-series are analyzed for trends, without
temporal integration, linear regression needs to be used with care
because any auto-correlation within the dataset will violate some
model assumptions (Beck et al., 2006; de Beurs & Henebry, 2004;
McBride et al., 1994) and trends may be less significant than they
appear. Either seasonality must be removed (Hussian et al., 2005) or a
non-parametric trend test that accounts for seasonality may be
applied (de Beurs & Henebry, 2004). In the Sahel, growth intensity
has been measured by a combination of the seasonal amplitude and
the seasonal total but the amplitude appeared to be affected by
saturation of the NDVI signal (Eklundh & Olsson, 2003). The non-
parametric analysis will not be so affected because NDVI values near
the beginning and end of the season are well below saturation level.

This paper considers monotonic trends; accordingly it is assumed
that trends preserve their increasing or decreasing order throughout the
time-series. We examine differences between previously-published
methods using the 1981–2006Global InventoryModeling andMapping
Studies (GIMMS) NDVI dataset (Bai & Dent, 2009; Bai et al., 2008)
and suggested improvements that do not reduce temporal resolu-
tion: 1) a linear model applied to NDVI residuals after the seasonal
component has been removed; 2) a non-parametric model applied to
the original NDVI data; 3) a non-parametric model applied to veg-
etation development stages (NDVI data adjusted for the growing
season). Long-term and annual harmonic analyses were used to filter
cloudiness and seasonality, and to derive phenological measures.

2. Materials and methods

Harmonic analysiswas applied to theNDVI data to remove residual
cloud and haze effects and seasonality. Greening and browning trends
were then investigated using linear and non-parametric models,
summarizing the outputs by biome.

2.1. The GIMMS dataset

NDVI is the most-used product derived from the National
Oceanographic and Atmospheric Administration (NOAA) Advanced
Very High Resolution Radiometer (AVHRR) data (Cracknell, 2001).
We used GIMMS version G (Tucker et al., 2004), consisting of 26 years
of NDVI data from 1981 through 2006, summarized fortnightly at
8 km resolution. The fortnightly time-series was derived from daily
4 km global area coverage data from a suite of NOAA satellites (Tucker
et al., 2005), applying the maximum-value-composite (MVC) tech-
nique to remove bias caused by atmospheric conditions (Holben,
1986). However, this is not an atmospheric-correction method and
some inaccuracy remains, especially in hazy and cloudy conditions
(Nagol et al., 2009). Orbital decay and changes in NOAA satellites are
known to affect AVHRR data but processed NDVI data have been
found to be free of trends introduced from these effects (Kaufmann
et al., 2000). This is confirmed by a study in the Sahel to the effects
of shifts in solar zenith angle on NDVI (Eklundh & Olsson, 2003).

2.2. Harmonic analysis of NDVI time-series

Phenological patternswere extracted from the GIMMS data using a
modified implementation of the HANTS algorithm (deWit & Su, 2005;
Roerink et al., 2000) which describes seasonal effects in vegetation
using a limited number of low-frequency cosine functions with dif-
ferent phases, frequencies and amplitudes. The algorithm uses Fourier
analysis, complemented with detection of outliers, which are flagged
and replaced iteratively (Fig. 1).

First, the raw GIMMS data are used as input for a fast Fourier
transform (FFT). The frequencies representing the yearly, 6-monthly
and 4-monthly signals are selected from the Fourier spectrum. Based
on these frequencies, the spectrum is transformed back to a filtered
NDVI time-series using inverse FFT. Outliers are filtered using a fit-
error tolerance (FET): each original NDVI value that deviates from the
harmonic curve by more than the FET-value is considered as noise
and is replaced by the filtered value. This procedure is repeated
until either no points exceed the FET or a pre-defined constraint is
reached; the constraints concern the maximum number of itera-
tions (iMAX) or a threshold on retained data points, which is closely
related to the degree of over-determinedness as defined by Roerink
et al. (2000). The number of retained data points may be taken as a
measure of the performance of the model. A disadvantage of HANTS
is the lack of objective rules to determine its control parameters;
parameterization requires experience and running several parame-
ter combinations.

We used HANTS in two ways. First, long-term seasonal trends
were determined for each pixel using the full GIMMS dataset (HAfull).
Secondly, each year was analyzed separately (HAyear). Differences
between the two filtered results were considered NDVI anomalies
(A). Fig. 2 and Eq. (1) illustrate how the anomalies were calculated.

A tð Þ = HAyear tð Þ−HAfull tð Þ ð1Þ

Using anomalies, seasonality could be almost completely elimi-
nated from the data, as demonstrated by the auto-correlation func-
tions in Fig. 3. The algorithmwas tuned to disregard values lower than
zero that correspond to water or null-values in the GIMMS data. The
eliminated values were replaced by fills — having a value of zero. The
FET was set to 10% of the NDVI range (0.1). The number of iterations
required depends on the biome and the length of the time-series. For
a single-year analysis, 1 or 2 iterations are enough for all except some
tropical areas in which the amplitude is limited and cloudiness
affects even the fortnightly MVC images (Julien & Sobrino, 2010); in
these cases a stable fit is obtained after 3 or 4 iterations. The iMAX was
fixed to 6 iterations in the yearly analysis. The full time-series is 26
times longer and it may need more iteration for a stable fit; for this
reason the iMAX was doubled to 12. The minimal number of retained
data points was set to 16 and 416 for the yearly and the full datasets,
respectively. This means that the output curve is always fitted to at
least two-thirds of the original data points, even if the FET is not
achieved. Table 1 lists the parameters used for analysis of both the
full dataset and each year separately.

2.3. Extraction of phenological measures

Although satellite-observed phenology – also referred to as land
surface phenology (LSP) – is not identical to plant phenology, it is
considered to be related (Doktor et al., 2009; Liang & Schwartz, 2009;
White et al., 2009). Therefore, LSP has been used to define devel-
opmental stages of vegetation. Analyzing trends in NDVI by vege-
tation development stage rather than by day-of-the-year eliminates
variations in the start and length of the growing season — since the



Fig. 1. Harmonic analysis of NDVI time-series flowchart.
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growing season is fully contained within the first developmental
stage (start of season, SoS), and the last stage (end of season, EoS).
Various approaches have been described to derive SoS from NDVI
time-series: half-maximum (White et al., 1997), 10% amplitude
(Jönsson & Eklundh, 2002), inflection point (Moulin et al., 1997),
maximum curvature (Zhang et al., 2003), delayed moving average
and forward-looking moving average (Reed et al., 2003). Following
White et al. (2009), we used the first derivative of the HANTS-
smoothed NDVI profile, where SoS is defined as the maximum of the
first derivative (maximum NDVI increase), and EoS is defined as the
first time after SoS where the NDVI value drops below the value at
the start of the growing season. Between SoS and EoS, ten equally
spaced vegetation development stages were defined. This approach is
reliable in comparisonwith several othermethods (White et al., 2009),
but it can be anticipated that the approach only works for single
growing seasons and that it will not be able to detect multiple growing
seasons. This limits the applicability of the method in multi-cropping
regions. For illustration, Fig. 4 shows an example of a growing season in
which several measures are indicated.

The NDVI values at each development stage (NDVIds) were cal-
culated using the yearly harmonic fit (Eq. (2)), where FC represents
the Fourier Component, NDVImean is the mean NDVI (FC0), A is the
Fig. 2. Example of NDVI anomalies as derived from the
amplitude,Φ is the phase shift and x is the day number represented in
radians (Eq. (3)).

NDVIds = NDVImean + ∑FC max
i = FC1

Ai ⋅cos i⋅x + Φið Þ ð2Þ

x = day= 365⋅2π ð3Þ

For each growing season, this provided 12 NDVIds values that were
used as input for the seasonal Mann–Kendall (SMK) model.

2.4. Trend analysis

NDVI time-series are characterized by outliers, seasonality and
serial auto-correlation. The GIMMS data were analyzed for trends
using three different strategies that take account of these effects — all
involving harmonic smoothing to remove outliers and seasonality.

Thefirst approach–here referred to as the linearmodel (LM)–uses
the smoothed time-series (624 fortnightly values from 1981 through
2006) to analyze anomalies (A) between the long-term harmonic fit
and yearlyfits (Eq. (1)). In the case of a perfectly stable seasonal pattern,
without additional trend, there would be no anomalies; conversely,
differences between the long-term and yearly fits may indicate
long- and short-term fits of the harmonic analysis.

image of Fig.�1
image of Fig.�2


Fig. 3. Average auto-correlation functions (ACF) of GIMMS data (A: interpolated, B: anomalies) with fortnightly lags (lag 24=1 year). The dotted lines indicate the 95% confidence
interval of zero auto-correlation. For both, single and double growing seasons, 30 pixels were used.
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greening or browning, particularly if there is a significant negative or
positive trend. Trendswere quantified by the slopeof the regression line
derived from a linear model of the NDVI anomalies against time. The
fitted slopes were tested for significance using analysis of variance
(ANOVA) with a significance level (α) of 0.1. Only slopes that differ
significantly from zero have been considered to indicate greening or
browning trends.

The second approach used the HANTS-interpolated data without
removing seasonality. This dataset would violate the assumption of
independent Y-values, which is a basis for linear regression. For this
reason, the non-parametric seasonal Mann–Kendall test was used.
The test may be used with missing or tied data and its validity does
not depend on the data being normally distributed. Mann (1945) first
suggested using the Mann–Kendall test for significance of Kendall's τ
for temporal trends and this approach has since been applied to
seasonal data, mainly for hydrological analyses (Hirsch et al., 1982)
and, more recently, with NDVI data (Alcaraz-Segura et al., 2009, 2010;
Chamaille-Jammes et al., 2006; Pouliot et al., 2009). The test consists
of computing the Kendall Score (S) and its variance separately for
Table 1
Parameters used in HANTS analysis.

Single-year Full GIMMS (26 years)

Number of data points 26 624
Fourier frequencies 0,1,2,3 0,26,52,78
Fit error tolerance (FET) 0.1 0.1
Max. iterations (iMAX) 6 12
Min. retained data points 16 (66.7%) 416 (66.7%)
each season (p). In this case, p equals the number of observations in a
year (24). For each season, n equals the number of observations in the
record (26). S denotes the sign (sgn) of the change between sub-
sequent samples and attains the value −1, 0 or +1 (Hirsch & Slack,
1984). These individual values are summed over all samples to obtain
the seasonal statistic Sg (Eq. (4)). The sum over all seasons provides
the final test statistic S′ (Eq. (5)). Subsequently, the Kendall's rank
correlation coefficient (τ) ranging between−1 and 1 (Kendall, 1938),
is calculated (Eq. (6)). The null hypothesis H0 is that for each of p
seasons the n samples are randomly ordered (mean S=0), versus
the alternative hypothesis HA of a monotonic trend in one or more
seasons (Hirsch & Slack, 1984). H0 was tested 2-sided against HA and
rejectedwhen Kendall's τ of NDVI versus time is significantly different
from zero (α=0.1).We then conclude that there is a monotonic trend
in NDVI over time: a greening trend if τN0 and a browning trend if τb0.

Sg = ∑
ibj

sgn Xjg−Xig

� �
g = 1;2;:::;p ð4Þ

S0 = ∑
p

i=1
Sg ð5Þ

τ =
S0

n n−1ð Þ= 2 ð6Þ

In a further step, the slope of this trend may be quantified using a
Kendall slope estimator, but we preferred using the Kendall's rank
correlation coefficient τ (Eq. (6)) directly.

image of Fig.�3


Fig. 4. Example of single growing season and related phenological measures. Start of season (SoS) is defined as the date of the inflexion point of the NDVI curve and end of season
(EoS) as the date at which NDVI drops below the SoS value. In between these dates, 10 equally distanced vegetation development stages (VDS) are defined, covering the entire
growing season (shaded area).
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The seasonal approach compares events linked to the same sea-
sonal phase (e.g. the first half of January); each scene is compared with
the corresponding scene in other years but no cross-phase compari-
sons are made. In reality, phenological cycles vary in start and length
according to theweather (Cleland et al., 2007;Moulin et al., 1997; Zhou
et al., 2001); such variability may produce trends that may be falsely
interpreted as greening or browning. Therefore, we propose a third
method in which we use the SMK method to analyze trends by vege-
tation development stages (VDS) rather than by month or calendar
day. This approach eliminates phenological shifts and variations in
length of season (LoS). A linear model of yearly LoS values was used to
find regions where greening or browning may be caused by a longer
or shorter growing season, and the coefficient of variation (CoV) was
used as a measure of reliability. A large variation in the identified LoS
might indicate limitations to the model's capability to extract phenol-
ogical parameters, for instance as a result of multiple growing seasons
or low seasonal amplitude.

The International Geosphere–Biosphere Program (IGBP) global-
land-cover-characteristics database (Loveland et al., 2000) was used
to calculate statistics of our results according to biome. The 1 km
dataset was re-sampled to 8 km resolution; the IGBP biome with
the highest occurrence was then assigned to each pixel. To minimize
edge-effects and mixed pixels, only clusters of more than 50 adja-
cent pixels belonging to the same IGBP class were used to calculate
statistics.

3. Results

3.1. Linear trends in NDVI anomalies

Fig. 5a shows the results of the per-pixel linear trend analysis
based on the anomaly dataset: green and red colors indicate green-
ing and browning, respectively, and areas with little or no vegetation
(yearly average NDVIb0.1) are masked. Overall, greening predomi-
nates, especially in the Northern Hemisphere and most notably in
the boreal forests, eastern Europe, Asia Minor, the Sahel, and western
India. In the southern hemisphere, greening is apparent in Western
Australia and Botswana; and browning in the tropical Africa and
Indonesia/Oceania and in northern Argentina.

3.2. Seasonal trends in interpolated NDVI

The SMK model reveals some of the same prominent regions of
greening as the linear model, including western India and the Sahel,
but it shows a different picture for some other regions; in some cases
the detected trend is even inverted (e.g. parts of Botswana, Nigeria,
Argentina and Australia). With only a few exceptions, the absolute
Kendall τ scores were not larger than 0.25, which indicates rather
weak trends and therefore, the map is not illustrated here.

The extent to which the SMK model is influenced by phenological
variations is determined by the variation in SoS (phenological shift)
and LoS (variation in length). If the growing season is stable, then
the inter-annual VDS dates are close to each other—which is essential
for the SMK model. Fig. 6 shows the variation in LoS using the slope
of the linear trend (days/year) analysis and the CoV. It is clear that
the extracted growing season is not stable everywhere: most re-
gions show a positive or negative trend in LoS. This trend is significant
(α=0.1) in parts of the Sahel, Asia, North-America and northern
Europe, with lowest p-values in Sweden and Russia. The CoV values
indicate that the extraction of LoS is stable (low CoV) across most of
the northern hemisphere but less stable in the tropics and some parts
of the southern hemisphere.

3.3. Seasonal trends in phenology-adjusted NDVI

The map of Kendall's τ scores from the VDS model (Fig. 5b)
identifies the same areas of distinct greening but the absolute Kendall
τ values are higher than those from the SMKmodel (commonly higher
than 0.3 in areas with a greening or browning trend). Results from
the VDS model should be interpreted in combination with the trend
in LoS (Fig. 6) because greening can be caused either by a longer
growing season or by a higher rate of production. The former effect
is not captured by this method because the data were adjusted for
changes in length of growing season.

3.4. Significance of trends

In Fig. 5, the non-masked pixels show significant trends (α=0.1),
green indicates a positive trend and red a negative trend. The analysis
of variance (ANOVA) of the LM results shows that the identified
trends are significant in large parts of Europe, western India, Western
Australia, the Sahel, Botswana and in some parts of Argentina, North
America and Canada. Trends are weak in most tropical and tundra
regions. The SMK model had non-significant values in most places
and these results are not shown in Fig. 5; only few pixels with
significant trends were found in western India, Western Australia and
parts of the Sahel and Asia Minor. The VDS model was more powerful
in rejecting the no-trend hypothesis: significant trends are revealed

image of Fig.�4


Fig. 5. (a) Trend in NDVI (dNDVI/dt, t in years), based on linear model of NDVI anomalies (1981–2006). (b) Kendall's tau from seasonal Mann–Kendall model on data adjusted by
vegetation development stage (VDS). In both cases trends were assessed for significance using analysis of variance. Weak trends (α=0.1) have been masked.
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in the northern Sahel, Asia Minor, Scandinavia, Western Australia and
Botswana and smaller parts of western India, China, Canada and the
Horn of Africa (Fig. 5b).
4. Discussion

4.1. Model results

The slopes found by the linear model using fortnightly NDVI values
are very close to the linear trend analysis of yearly cumulative values
published by Bai et al. (2008). On average, the absolute difference
in trend is b0.001 units/year and never as much as 0.01 units/year —
which supports the contention that reducing the temporal resolution
to yearly values and the choice of annual break-point does not affect
the trend slopes (Dent et al., 2009), given that the time-series start
and end in the same phase.

The SMK model is valid only when it is conceptually correct to
compare measurements based on calendar date. In case of NDVI time-
series, this assumes that there is no phenological shift or variation
in length of growing season throughout themeasured period—which
is not the case. Therefore, the SMK model identified only the most
conspicuous greening regions; the likeliness (according to Kendall's τ)
and significance (according to p-values) were generally low.

In the VDS model, Kendall's τ values were higher and p-values
lower than in the SMK approach but VDS measures a different attri-
bute of vegetation. The LM and SMK models use values with equal
intervals (continuous fortnightly measurements) whereas VDS is
based on an equal number of values for each growing season (the
interval between these values might differ between years). Therefore,
the VDS model does not show greening or browning associated with
variation in growing season; it measures productivity within a
growing season (changes in photosynthetic intensity) rather than of
the total yearly productivity (changes in integrated NDVI).

4.2. Biome stratification

To summarize the model results by IGBP biomes: the LM indicates
greening in all biomes except deciduous needle-leaved forest, where
no trend is observed (Fig. 7A No. 3). Fig. 7B,E shows that the LoS trend
opposes the photosynthetic intensity trend in all biomes except
shrub land and savanna. For cropland, the LoS trend is negligible. In
all forest types but especially in Scandinavian boreal forest, the
VDS model indicates a decrease in photosynthetic intensity which is

image of Fig.�5


Fig. 6. Trend in length of growing season (LoS) derived fromGIMMS using HANTS. (a) Slope of regression line: dLength/dt, Length in days, t in years. Weak trends (α=0.1) have been
masked. (b) Coefficient of variation (CoV) of length of growing season (LoS).
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counterbalanced by an overall increase in LoS (Figs. 5b and 6a). This
might indicate that vegetation growth is no longer limited by
temperature but by other limiting factors such as exhaustion of soil
water or nutrients, which is in line with evapo-transpiration models
(Zhang et al., 2009). On the other hand, the significance of the trends
appears to be highest outside of the forest biomes (Fig. 7D) but, as
already remarked, the power of the LM might be over-estimated (the
predictive power of the models used and the performance of HANTS
are discussed in Section 4.4).

4.3. Assessment of greening and browning trends

All three methods agreed on a significant greening across western
India, Western Australia, Asia Minor, parts of the Sahel, Canada and
the USA. However, even if field observations are available for vali-
dation, they are usually limited to a few points in time that may not
be representative for 8 km pixels (Running & Nemani, 1988). We
therefore compared our results with regional studies.

An inherent problem with time-series is that the initial status is
often not known. The Sahel, for instance, experienced severe droughts
in the late 1960s, 1970s and the early 1980s (Govaerts & Lattanzio,
2008; Nicholson, 2000; Zeng, 2003); recovery from these droughts
shows as greening that is confirmed by several studies (Anyamba &
Tucker, 2005; Herrmann et al., 2005; Heumann et al., 2007; Olsson
et al., 2005) and there is controversy about whether this greening
trend is concealing the role of human-induced land degradation (Hein
& de Ridder, 2006; Prince et al., 2007). The VDS model shows strong
positive trends in the northern parts of the Sahel, e.g. central Chad
and northern Burkina Faso, which indicates that greening is caused by
a more intense growing season rather than a longer season, in line
with recovery from drought. Greening in the Deccan thorn forests of
west India can be explained, in part, by recovery from degradation
that occurred prior to the start of the GIMMS record (Champion &
Seth, 1968); nowadays, parts of these shrub lands are protected
(Chape et al., 2003) and recovering from human-induced degradation.

In Western Australia, Donohue et al. (2009) identified greening by
an increase in fPAR (from AVHRR PAL) for the period 1981–2006;
greening in north-eastern Australia is also in line with this increase
in fPAR. In contrast, central Australia browned during this period,
which might be explained by an 0.1 °C/year increase in temperature
(Nemani et al., 2003). Also in the southern hemisphere, there has been
greening in Botswana, which is in line with the 1% yearly increase in

image of Fig.�6


Fig. 7. statistics based on selected igbp biomes. (A) slope linear model, (B) Kendall's tau of vegetation development stage (vds) model, (C) fraction of retained data points (rdp) from
hants model, (D) p-values from linear and vds models, (E) slope linear model length of season (los). Some igbp biomes have been merged based on similar responses. Biomes which
are not shown are: urban, snow and ice, barren/sparsely vegetated, permanent wetlands and water bodies.
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NPP found by Nemani et al. (2003) using AVHRR data in a production-
efficiency model.

In Canada and the USA, all models show three notable greening
regions: (1) the Low-Arctic tundra in Alaska, North West Territories
and Yukon; (2) tundra and taiga east of Hudson's Bay; and (3) the
prairie of southern Saskatchewan. These trends are most explicit in
the VDS model and confirmed by other studies. Pouliot et al. (2009)
used a similar Mann–Kendall approach with GIMMS data and found
NDVI trends (of about 0.01 units/year) in all three regions. Goetz et al.
(2005), using the same input data, confirm two out of three greening
regions and, also, browning in Alaska, close to the British Columbia/
Alberta border, and some parts of Quebec; they conclude that growth
has increased in the tundra thanks to rising CO2 concentration and
temperature but, in the boreal forest, other factors including fire
come into play. Alcaraz-Segura et al. (2009) also show that the
GIMMS dataset largely misses greening due to post-fire recovery.
This is also mentioned by Neigh et al. (2008) who attribute greening
of the tundra to an increase in temperature and associated length-
ening of the growing season; greening of the prairies is attributed
mainly to an increase in rainfall, which has lead to much higher crop
yields and conversion of more land to arable.

There is some discrepancy between trends in Eurasia. According to
the linear model, greening prevails over browning, most conspicu-
ously towards the east, in line with the relation between PAL NDVI
and land surface temperature (Julien et al., 2006) — drier areas in the
south have become hotter and even drier while northern Europe has
become cooler. Stöckli and Vidale (2004) found a related positive
trend in LoS of 1.4 days per year in central Europe (Germany) and a
negative trend of −0.54 days per year in Scandinavia. Our harmonic
analysis (Fig. 6) reproduced the 1.4 days trend for Germany (average
of significant pixels) but shows an increase in LoS in Scandinavia of
1.47 days, which might indicate warming (Hüttich et al., 2007;
Karlsen et al., 2007). The VDS model shows a decline in photosyn-
thetic activity in Scandinavia and a longer growing season would
explain this difference between the linear and the VDS model;
greening due to a longer growing season does not necessarily produce
a greater intensity of activity in the growing season.

In their global assessment and in detail in China, Bai and Dent
(2009) and Bai et al. (2008) used GIMMS data in anotherway to assess
land degradation and improvement, applying a linear model but
introducing additional criteria of rain-use efficiency and energy-use
efficiency to screen NDVI trends caused by drought and climatic
warming. By translating NDVI to net primary productivity (NPP) using
the relationship with MODIS NPP data, they derived a tangible mea-
sure of severity that can be subjected to economic appraisal. For
China, they conclude that land degradation is most conspicuous in
the rapidly-developing, humid south, rather than in the drylands of
the north and west, where land reclamation initiatives have been
concentrated. This conclusion is supported by our results from the LM
and the VDS model.

4.4. Limitations and lessons learned

Harmonic analysis has removed some of the limitations of
previous work that used only yearly-accumulated NDVI data. HANTS
removes cloud interference and eliminates the influence of pheno-
logical shift between the northern and southern hemisphere — but
does not affect inter-annual phenological shifts from which the LM
and, especially, the SMK model suffer. This problem is solved by the
single-growing-season normalization used in the VDS approach.

Serial auto-correlation remains an issue with the use of the linear
model (Fig. 3); a significant deviation from the norm is likely to show
for much of that growing season, rather than for a single measure-
ment. Providing that seasonality is accounted for, the power of the
statistical methods is mainly determined by the sample size; serial
auto-correlation is an issue if the value of a sample is partly deter-
mined by its neighbors — so a dataset with serial auto-correlation
contains less information than one of the same length with truly
independent samples. Serial auto-correlation spuriously inflates the
power of the test (McBride et al., 1994). It is a challenge to distinguish
between statistically significant changes and practically significant
changes and, in this sense, non-parametric models should be more
robust than parametric models or, from a different perspective, the
linear trend is more powerful in rejecting H0 (Hirsch & Slack, 1984)—
which explains why the LM trends appear more significant (Figs. 5
and 7D).

The performance of HANTS is biome-dependent. Most IGBP
biomes show harmonic fits with more than 90% retained data points

image of Fig.�7
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(Fig. 7C) so the NDVI curve is fitted losing less than 10% of the original
measurements. Exceptions are tropical evergreen broadleaf forest,
deciduous needle-leaf forest, and shrub land. In the IGBP classifica-
tion, the latter includes most tundra – where NDVI is zero, or a fill
value, under snow cover and increases quickly to high values upon
snowmelt (a situation that would be better described by double
logistic fitting (Beck et al., 2006)). In the tropics, by contrast, NDVI is
high throughout the year so noise in the phase-shift estimates makes
it hard to extract phenological measures.

Better analysis requires a globally applicable method for deriving
the start and length of growing season. This is neither simple nor
straightforward (Hird & McDermid, 2009); with the HANTS tech-
nique used in this study, phenological measures can be derived
automatically only for areas with a single annual growing season
but it is essential to extract multi-season measures, for instance in
eastern China, the Horn of Africa and the Ganges plain. For these
regions, Fig. 6b shows a large coefficient of variation in the extracted
LoS, probably caused by slight variations in the minimal NDVI
between the growing seasons, which mean that, in one year, EoS
occurs at the end of the first growing season and, in another year, at
the end of the second season. This requires a procedure to extract
multiple growth periods, e.g. Zhang et al. (2003), and, ideally, we
should like one globally applicablemethod. Although several methods
are available, each is suitable for only one or few biomes. The method
proposed by Geerken (2009), defining a set of reference curves, is a
step towards global application.

Applying NDVI trends for land degradation assessment, definition
of land degradation remains contentious. Since the initial status is
often not known, greening might represent recovery from drought or
other disturbance; and greening resulting from the replacement of
old-growth forest by crops or grassland might be considered as either
degradation or land improvement, depending on the researchers
point of view. In the humid tropics, the NDVI proxy is less reliable due
to saturation of the signal (Myneni et al., 2002) and cloud cover;
although most trends are in line with decreasing NPP (Nemani et al.,
2003), there are also contradicting trends.

At present, choice of NDVI time-series presents a trade-off be-
tween temporal coverage and spatial resolution — between 10 years
at 250–500 m resolution (MODIS) or almost 30 years at 1–8 km
resolution (AVHRR). The longer period captures more climatic cycles
and significant changes in land use and management, but a single
pixel might contain several land use types or ecosystems. These data
sets, however, are more suitable for capturing temporal dynamics.
We have assessed monotonic trends in NDVI but vegetation trends
are often complex and breaks or interruptions of trends are com-
mon (Angert et al., 2005; Slayback et al., 2003; Tucker et al., 2001;
Verbesselt et al., 2010; Xin et al., 2008). Major volcanic eruptions
can cause sudden breaks in a trend; fast-acting climatic cycles like El
Niño or broad-scale land management practices may bring about
large fluctuations. Gradual changes may be associated with slow-
acting climatic cycles or the accumulation of changes in management
but these gradual changes might, ultimately, trigger a catastrophic
shift in the ecosystem (Scheffer et al., 2001). Trend breaks will
become easier to identify as longer time-series of global observations
become available.
5. Conclusions

Weused harmonic analysis to enhance linear andmonotonic trend
analysis of GIMMS NDVI time-series data. Greening and browning
trends are revealed but these cannot be quantified unambiguously.
Variations in phenology confuse simple greening or browning trends
but this aspect may be illuminated by using the seasonal Mann–
Kendall (SMK) model with normalization of the growing season using
vegetation development stages (VDS), rather than analysis by calendar
day. The VDS model shows that greening or browning depends on
growing intensity as much as yearly-aggregated NDVI.

At global scale, phenological shifts and variation in length of
growing season render comparisons of NDVI values by calendar date
unsatisfactory. However, it is difficult to extract phenological mea-
sures using a generalized method; the explaining power of the VDS
model may be increased by, for instance, deriving these measures by
several methods according to the phenology or climate zone, but this
has yet to be undertaken.

Linear-model slopes derived fromanomalies between long-term and
yearly harmonic fits hardly differ from the slopes of yearly-aggregated
NDVI data — so it unlikely that aggregating to yearly values severely
influences NDVI trend analysis. However, the explaining power
decreases with a decreasing number of observations.

All models were consistent in detecting a greening trend in
western India, the Sahel and parts of Asia Minor, Canada, northern
China and Western Australia; the biomes showing most-prominent
greening were shrub land, savanna and cropland.
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