Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
118 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Elevation-dependent influence of snow accumulation on forest greening
Rising temperatures and declining water availability have influenced the ecological function of mountain forests over the past half-century. For instance, warming in spring and summer and shifts towards earlier snowmelt are associated with an increase in wildfire activity and tree mortality in mountain forests in the western United States (1,2). Temperature increases are expected to continue during the twenty-first century in mountain ecosystems across the globe (3,4), with uncertain consequences. Here, we examine the influence of interannual variations in snowpack accumulation on forest greenness in the Sierra Nevada Mountains, California, between 1982 and 2006. Using observational records of snow accumulation and satellite data on vegetation greenness we show that vegetation greenness increases with snow accumulation. Indeed, we show that variations in maximum snow accumulation explain over 50% of the interannual variability in peak forest greenness across the Sierra Nevada region. The extent to which snow accumulation can explain variations in greenness varies with elevation, reaching a maximum in the water-limited mid- elevations, between 2,000 and 2,600 m. In situ measurements of carbon uptake and snow accumulation along an elevational transect in the region confirm the elevation dependence of this relationship. We suggest that mid-elevation mountain forest ecosystems could prove particularly sensitive to future increases in temperature and concurrent changes in snow accumulation and melt.
Located in Resources / Climate Science Documents
File PDF document Brownness of organics in aerosols from biomass burning linked to their black carbon content
Atmospheric particulate matter plays an important role in the Earth’s radiative balance. Over the past two decades, it has been established that a portion of particulate matter, black carbon, absorbs significant amounts of light and exerts a warming effect rivalling that of anthropogenic carbon dioxide1,2. Most climate models treat black carbon as the sole light-absorbing carbonaceous particulate. However, some organic aerosols, dubbed brown carbon and mainly associated with biomass burning emissions3–6 , also absorbs light7 . Unlike black carbon, whose light absorption properties are well understood8, brown carbon comprises a wide range of poorly characterized compounds that exhibit highly variable absorptivities, with reported values spanning two orders of magnitude3–6,9,10. Here we present smog chamber experiments to characterize the effective absorptivity of organic aerosol from biomass burning under a range of conditions. We show that brown carbon in emissions from biomass burning is associated mostly with organic compounds of extremely low volatility11. In addition, we find that the effective absorptivity of organic aerosol in biomass burning emissions can be parameterized as a function of the ratio of black carbon to organic aerosol, indicating that aerosol absorptivity depends largely on burn conditions, not fuel type. We conclude that brown carbon from biomass burning can be an important factor in aerosol radiative forcing.
Located in Resources / Climate Science Documents
File PDF document Continuous flux of dissolved black carbon from a vanished tropical forest biome
Humans have used fire extensively as a tool to shape Earth’s vegetation. The slash-and-burn destruction of Brazil’s Atlantic forest, which once covered over 1.3 million km2 of present-day Brazil and was one of the largest tropical forest biomes on Earth1, is a prime example. Here, we estimate the amount of black carbon generated by the burning of the Atlantic forest, using historical records of land cover, satellite data and black carbon conversion ratios. We estimate that before 1973, destruction of the Atlantic forest generated 200–500 million tons of black carbon. We then estimate the amount of black carbon exported from this relict forest between 1997 and 2008, using measurements of polycyclic aromatic black carbon collected from a large river draining the region, and a continuous record of river discharge. We show that dissolved black carbon (DBC) continues to be mobilized from the watershed each year in the rainy season, despite the fact that widespread forest burning ceased in 1973. We estimate that the river exports 2,700 tons of DBC to the ocean each year. Scaling our findings up, we estimate that 50,000–70,000 tons of DBC are exported from the former forest each year. We suggest that an increase in black carbon production on land could increase the size of the refractory pool of dissolved organic carbon in the deep ocean.
Located in Resources / Climate Science Documents
File PDF document Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally
It is possible that anthropogenic climate change will drive the Earth system into a qualitatively different state1. Although different types of uncertainty limit our capacity to assess this risk 2, Earth system scientists are particularly concerned about tipping elements, large-scale components of the Earth system that can be switched into qualitatively different states by small perturbations. Despite growing evidence that tipping elements exist in the climate system1,3, whether large-scale vegetation systems can tip into alternative states is poorly understood4. Here we show that tropical grassland, savanna and forest ecosystems, areas large enough to have powerful impacts on the Earth system, are likely to shift to alternative states. Specifically, we show that increasing atmospheric CO2 concentration will force transitions to vegetation states characterized by higher biomass and/or woody-plant dominance. The timing of these critical transitions varies as a result of between-site variance in the rate of temperature increase, as well as a dependence on stochastic variation in fire severity and rainfall. We further show that the locations of bistable vegetation zones (zones where alternative vegetation states can exist) will shift as climate changes. We conclude that even though large-scale directional regime shifts in terrestrial ecosystems are likely, asynchrony in the timing of these shifts may serve to dampen, but not nullify, the shock that these changes may represent to the Earth system.
Located in Resources / Climate Science Documents
File PDF document Carbon loss from an unprecedented Arctic tundra wildfire
Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils1,2. Fire has been largely absent from most of this biome since the early Holocene epoch3, but its frequency and extent are increasing, probably in response to climate warming4. The effect of fires on the C balance of tundra landscapes, however, remains largely unknown. The Anaktuvuk River fire in 2007 burned 1,039 square kilometres of Alaska’s Arctic slope, making it the largest fire on record for the tundra biome and doubling the cumulative area burned since 1950 (ref. 5). Here we report that tundra ecosystems lost 2,016 6 435 g C m22 in the fire, an amount two orders of magnitude larger than annual net C exchange in undisturbed tundra6. Sixty per cent of this C loss was from soil organic matter, and radiocarbon dating of residual soil layers revealed that the maximum age of soil C lost was 50 years. Scaled to the entire burned area, the fire released approximately 2.1 teragrams of C to the atmosphere, an amount similar in magnitude to the annual net C sink for the entire Arctic tundra biome averaged over the last quarter of the twentieth century7. The mag- nitude of ecosystem C lost by fire, relative to both ecosystem and biome-scale fluxes, demonstrates that a climate-driven increase in tundra fire disturbance may represent a positive feedback, potentially offsetting Arctic greening 8 and influencing the net C balance of the tundra biome.
Located in Resources / Climate Science Documents
File PDF document Carbon in idle croplands
The collapse of the Soviet Union had diverse consequences, not least the abandonment of crop cultivation in many areas. One result has been the vast accumulation of soil organic carbon in the areas affected.
Located in Resources / Climate Science Documents
File PDF document Attributing physical and biological impacts to anthropogenic climate change
Significant changes in physical and biological systems are occurring on all continents and in most oceans, with a concentration of available data in Europe and North America. Most of these changes are in the direction expected with warming temperature. Here we show that these changes in natural systems since at least 1970 are occurring in regions of observed temperature increases, and that these temperature increases at continental scales cannot be explained by natural climate variations alone. Given the conclusions from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report that most of the observed increase in global average temperatures since the mid-twentieth century is very likely to be due to the observed increase in anthropogenic greenhouse gas concentrations, and furthermore that it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica, we conclude that anthropogenic climate change is having a significant impact on physical and biological systems globally and in some continents.
Located in Resources / Climate Science Documents
File PDF document Biodiversity and ecosystem multifunctionality
Biodiversity loss can affect ecosystem functions and services1–4. Individual ecosystem functions generally show a positive asymptotic relationship with increasing biodiversity, suggesting that some species are redundant5–8. However, ecosystems are managed and conserved for multiple functions, which may require greater biodiversity. Here we present an analysis of published data from grassland biodiversity experiments9–11, and show that ecosystem multifunctionality does require greater numbers of species. We analysed each ecosystem function alone to identify species with desirable effects. We then calculated the number of species with positive effects for all possible combinations of functions. Our results show appreciable differences in the sets of species influ- encing different ecosystem functions, with average proportional overlap of about 0.2 to 0.5. Consequently, as more ecosystem pro- cesses were included in our analysis, more species were found to affect overall functioning. Specifically, for all of the analysed experiments, there was a positive saturating relationship between the number of ecosystem processes considered and the number of species influencing overall functioning. We conclude that because different species often influence different functions, studies focus- ing on individual processes in isolation will underestimate levels of biodiversity required to maintain multifunctional ecosystems.
Located in Resources / Climate Science Documents
File PDF document A paradigm shift in understanding and quantifying the effects of forest harvesting on floods in snow environments
A well-established precept in forest hydrology is that any reduction of forest cover will always have a progressively smaller effect on floods with increasing return period. The underlying logic in snow environments is that during the largest snowmelt events the soils and vegetation canopy have little additional storage capacity and under these conditions much of the snowmelt will be converted to runoff regardless of the amount or type of vegetation cover. Here we show how this preconceived physical understanding, reinforced by the outcomes of numerous paired watershed studies, is indefensible because it is rationalized outside the flood frequency distribution framework. We conduct a meta-analysis of postharvest data at four catchments (3–37 km2) with moderate level of harvesting (33%–40%) to demonstrate how harvesting increases the magnitude and frequency of all floods on record (19–99 years) and how such effects can increase unchecked with increasing return period as a consequence of changes to both the mean (þ11% to þ35%) and standard deviation (􏰁12% to þ19%) of the flood frequency distribution. We illustrate how forest harvesting has substantially increased the frequency of the largest floods in all study sites regardless of record length and this also runs counter to the prevailing wisdom in hydrological science. The dominant process responsible for these newly emerging insights is the increase in net radiation associated with the conversion from longwave-dominated snowmelt beneath the canopy to shortwave-dominated snowmelt in harvested areas, further amplified or mitigated by basin characteristics such as aspect distribution, elevation range, slope gradient, amount of alpine area, canopy closure, and drainage density. Investigating first order environmental controls on flood frequency distributions, a standard research method in stochastic hydrology, represents a paradigm shift in the way harvesting effects are physically explained and quantified in forest hydrology literature.
Located in Resources / Climate Science Documents
File PDF document Climatic Impact of Tropical Lowland Deforestation on Nearby Montane Cloud Forests
Tropical montane cloud forests (TMCFs) depend on predictable, frequent, and prolonged immersion in cloud. Clearing upwind lowland forest alters surface energy budgets in ways that influence dry season cloud fields and thus the TMCF environment. Landsat and Geostationary Operational Environmental Satellite imagery show that deforested areas of Costa Rica’s Caribbean lowlands remain relatively cloud-free when forested regions have well-developed dry season cumulus cloud fields. Further, regional atmospheric simulations show that cloud base heights are higher over pasture than over tropical forest areas under reasonable dry season conditions. These results suggest that land use in tropical lowlands has serious impacts on ecosystems in adjacent mountains.
Located in Resources / Climate Science Documents