Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
86 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Enhanced Seasonal Exchange of CO2 by Northern Ecosystems Since 1960
Seasonal variations of atmospheric carbon dioxide (CO2) in the Northern Hemisphere have increased since the 1950s, but sparse observations have prevented a clear assessment of the patterns of long-term change and the underlying mechanisms. We compare recent aircraft-based observations of CO2 above the North Pacific and Arctic Oceans to earlier data from 1958 to 1961 and find that the seasonal amplitude at altitudes of 3 to 6 km increased by 50% for 45° to 90°N but by less than 25% for 10° to 45°N. An increase of 30 to 60% in the seasonal exchange of CO2 by northern extratropical land ecosystems, focused on boreal forests, is implicated, substantially more than simulated by current land ecosystem models. The observations appear to signal large ecological changes in northern forests and a major shift in the global carbon cycle.
Located in Resources / Climate Science Documents
File PDF document Evolutionary history and the effect of biodiversity on plant productivity
Loss of biological diversity because of extinction is one of the most pronounced changes to the global environment. For several decades, researchers have tried to understand how changes in biodiversity might impact biomass production by examining how biomass correlates with a number of biodiversity metrics (especially the number of species and functional groups). This body of research has focused on species with the implicit assumption that they are independent entities. However, functional and ecological similarities are shaped by patterns of common ancestry, such that distantly related species might contribute more to production than close relatives, perhaps by increasing niche breadth. Here, we analyze 2 decades of experiments performed in grassland ecosystems throughout the world and examine whether the evolutionary relationships among the species comprising a community predict how biodiversity impacts plant biomass production. We show that the amount of phylogenetic diversity within communities explained significantly more variation in plant community biomass than other measures of diversity, such as the number of species or functional groups. Our results reveal how evolutionary history can provide critical information for understanding, predicting, and potentially ameliorating the effects of biodiversity loss and should serve as an impetus for new biodiversity experiments.
Located in Resources / Climate Science Documents
File Experimental studies of dead-wood biodiversity — A review identifying global gaps in knowledge
The importance of dead wood for biodiversity is widely recognized but strategies for conservation exist only in some regions worldwide. Most strategies combine knowledge from observational and experimental studies but remain preliminary as many facets of the complex relationships are unstudied. In this first global review of 79 experimental studies addressing biodiversity patterns in dead wood, we identify major knowledge gaps and aim to foster collaboration among researchers by providing a map of previous and ongoing experiments. We show that research has focused primarily on temperate and boreal forests, where results have helped in developing evidence-based conservation strategies, whereas comparatively few such efforts have been made in subtropical or tropical zones. Most studies have been limited to early stages of wood decomposition and many diverse and functionally important saproxylic taxa, e.g., fungi, flies and termites, remain under-represented. Our meta-analysis confirms the benefits of dead-wood addition for biodiversity, particularly for saproxylic taxa, but shows that responses of non-saproxylic taxa are heterogeneous. Our analysis indicates that global conservation of organisms associated with dead wood would benefit most by prioritizing research in the tropics and other neglected regions, focusing on advanced stages of wood decomposition and assessing a wider range of taxa. By using existing experimental set-ups to study advanced decay stages and additional taxa, results could be obtained more quickly and with less effort compared to initiating new experiments.
Located in Resources / Climate Science Documents
File application/x-troff-ms Full Proposal - A Web-Based Tool for Riparian Restoration Prioritization to Promote Climate Change Resilience (RPCCR) in Eastern U.S. Streams
The RPCCR is a web-based tool currently under development which is designed to allow managers to rapidly identify high-priority riparian restoration targets. The objective of this project is to complete development of the RPCCR, link it with the Appalachian LCC website, and integrate it with ongoing stream temperature monitoring and modeling efforts within the Northeast Climate Science Center (NECSC) and participating Landscape Conservation Cooperatives.
Located in LP Members / / Riparian Restoration Team / Background Project and Member Information
File PDF document Historical legacies accumulate to shape future biodiversity in an era of rapid global change
Main conclusions : The failure to give adequate consideration to widespread cumulative time-lags often masks the full extent of biodiversity changes that have already been triggered. Effects that are particularly relevant for human livelihoods (e.g. changes in the provision of ecosystem services) may emerge with the most pronounced delay. Accordingly, the consideration of appropriate temporal scales should become a key topic in future work at the science–policy interface.
Located in Resources / Climate Science Documents
File D source code Human domination of the biosphere: Rapid discharge of the earth-space battery foretells the future of humankind
Earth is a chemical battery where, over evolutionary time with a trickle-charge of photosynthesis using solar energy, billions of tons of living biomass were stored in forests and other ecosystems and in vast reserves of fossil fuels. In just the last few hundred years, humans extracted exploitable energy from these living and fossilized biomass fuels to build the modern industrial-technological-informational economy, to grow our population to more than 7 billion, and to transform the biogeochemical cycles and biodiversity of the earth. This rapid discharge of the earth’s store of organic energy fuels the human domination of the biosphere, including conversion of natural habitats to agricultural fields and the resulting loss of native species, emission of carbon dioxide and the resulting climate and sea level change, and use of supplemental nuclear, hydro, wind, and solar energy sources. The laws of thermodynamics governing the trickle-charge and rapid discharge of the earth’s battery are universal and absolute; the earth is only temporarily poised a quantifiable distance from the thermodynamic equilibrium of outer space. Although this distance from equilibrium is comprised of all energy types, most critical for humans is the store of living biomass. With the rapid depletion of this chemical energy, the earth is shifting back toward the inhospitable equilibrium of outer space with fundamental ramifications for the biosphere and humanity. Because there is no substitute or replacement energy for living biomass, the remaining distance from equilibrium that will be required to support human life is unknown.
Located in Resources / Climate Science Documents
File PDF document Impacts of mountaintop mining on terrestrial ecosystem integrity: identifying landscape thresholds for avian species in the central Appalachians, United States
Reclaimed mine-dominated landscapes (less forest and more grassland/shrubland cover) elicited more negative (57 %) than positive (39 %) species responses. Negative thresholds for each landscape metric generally occurred at lower values than positive thresholds, thus negatively responding species were detrimentally affected before positively responding species benefitted. Forest interior birds generally responded negatively to landscape metric thresholds, interior edge species responses were mixed, and early successional birds responded positively. The forest interior guild declined most at 4 % forest loss, while the shrubland guild increased greatest after 52 % loss
Located in Resources / Climate Science Documents
Incorporating Ecosystem Services into Assessments of Climate Change Vulnerability and Adaptation
Rising sea levels coupled with population growth along coasts make climate adaptation planning an imperative. The framework of ecosystem services can help managers understand how alternative management and climate scenarios are likely to affect a broad range of services delivered to people from coastal ecosystems.
Located in News & Events / Events
File National Fish, Wildlife, & Plants Climate Adaptation Strategy
The purpose of the National Fish, Wildlife and Plants Climate Adaptation Strategy is to inspire and enable natural resource administrators, elected officials, and other decision makers to take action to adapt to a changing climate. Adaptation actions are vital to sustaining the nation’s ecosystems and natural resources — as well as the human uses and values that the natural world provides.
Located in Resources / General Resources Holdings
National Strategy Will Help Safeguard Fish, Wildlife and Plants in a Changing Climate
In partnership with State and Tribal agencies, the Obama Administration today released the first nationwide strategy to help public and private decision makers address the impacts that climate change is having on natural resources and the people and economies that depend on them. Developed in response to a request by Congress, the National Fish, Wildlife, and Plants Climate Adaptation Strategy is the product of extensive national dialogue that spanned nearly two years and was shaped by comments from more than 55,000 Americans.
Located in News & Events