Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
86 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File ECMAScript program Ecological responses to recent climate change
There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organizational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible.
Located in Resources / Climate Science Documents
File PDF document Ecological Restoration in the Light of Ecological History
Ecological history plays many roles in ecological restoration, most notably as a tool to identify and characterize appropriate targets for restoration efforts. However, ecological history also reveals deep human imprints on many ecological systems and indicates that secular climate change has kept many targets moving at centennial to millennial time scales. Past and ongoing environmental changes ensure that many historical restoration targets will be unsustainable in the coming decades. Ecological restoration efforts should aim to conserve and restore historical ecosystems where viable, while simultaneously preparing to design or steer emerging novel ecosystems to ensure maintenance of ecological goods and services.
Located in Resources / Climate Science Documents
File PDF document Economic growth as the limiting factor for wildlife conservation
The concept of limiting factor includes the lack of welfare factors and the presence of decimating factors. Originally applied to populations and species, the concept may also be applied to wildlife in the aggregate. Because the decimating factor of economic growth eliminates welfare factors for virtually all imperiled species via the principle of competitive exclusion, economic growth may be classified as the limiting factor for wildlife conservation. The wildlife profes- sion has been virtually silent about this limiting factor, suggesting that the pro- fession has been laboring in futility. The public, exhorted by neoclassical economists and political leaders, supports economic growth as a national goal. To address the limiting factor for wildlife conservation, wildlife professionals need to become versed in the history of economic growth theory, neoclassical economic growth theory, and the alternative growth paradigm provided by ecological economics. The Wildlife Society should lead the natural resources professions in developing a position on economic growth. carrying capacity, competitive exclusion, ecological economics, economic growth, limiting factor, neoclassical economics, niche breadth, steady state economy
Located in Resources / Climate Science Documents
File ECMAScript program Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States
Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.
Located in Resources / Climate Science Documents
File PDF document Ecosystem Disturbance, Carbon, and Climate
Models of climate change effects should incorporate land-use changes and episodic disturbances such as fires and insect epidemics.
Located in Resources / Climate Science Documents
File PDF document Ecosystem Service Markets 101: Supply and Demand for Nature
Establishing markets for ecosystem services—the benefits that nature provides, such as clean air, water, and wildlife habitat—has gained traction in some circles as a way to finance the conservation of these public goods. Market influences on supply and demand work in tandem to encourageecosystem protection. Jeff Kline and Trista Patterson, scientists with the Pacific Northwest (PNW) Research Station, have identified several criteria needed for ecosystem service markets to achieve their potential. These include regulatory limits on environmental damage, ecosystem services that are amenable to trading, and manageable transaction costs related to administering market programs and the necessary measuring and monitoring of marketed resources. If these criteria are not met, other conservation methods such as conservation easements, landowner incentive programs for environmental enhancement or protection, or taxes on environmental damage may be more effective. Discussions about ecosystem services often focus on increasing supply— storing more carbon or delivering more water, for example. However, net pressures on ecosystems can also be reduced by addressing consumption. Many energy efficiencies can be achieved by promoting awareness, informed choices, and behavior change. The PNW Research Station is examining both supply and demand approaches to ecosystem protection by encouraging the development of ecosystem services markets and identifying ways to reduce its own environmental footprint.
Located in Resources / Climate Science Documents
File PDF document Editorial : Beyond forest carbon
The preservation of forests, both on land and in mangrove swamps, has received much attention in the move to protect biological carbon stores. Less conspicuous communities of organisms deserve some scrutiny, too.
Located in Resources / Climate Science Documents
File PDF document Effect of habitat area and isolation on fragmented animal populations
Habitat destruction has driven many once-contiguous animal populations into remnant patches of varying size and isolation. The underlying framework for the conservation of fragmented popu- lations is founded on the principles of island biogeography, wherein the probability of species occurrence in habitat patches varies as a function of patch size and isolation. Despite decades of research, the general importance of patch area and isolation as predictors of species occupancy in fragmented terrestrial systems remains unknown because of a lack of quantitative synthesis. Here, we compile occupancy data from 1,015 bird, mammal, reptile, amphibian, and invertebrate population networks on 6 continents and show that patch area and isolation are surprisingly poor predictors of occupancy for most species. We examine factors such as improper scaling and biases in species representation as expla- nations and find that the type of land cover separating patches most strongly affects the sensitivity of species to patch area and isolation. Our results indicate that patch area and isolation are indeed important factors affecting the occupancy of many species, but properties of the intervening matrix should not be ignored. Improving matrix quality may lead to higher conservation returns than manipulating the size and configuration of remnant patches for many of the species that persist in the aftermath of habitat destruction. incidence function 􏰂 island biogeography 􏰂 logistic regression 􏰂 metaanalysis 􏰂 occupancy
Located in Resources / Climate Science Documents
File PDF document Effects of Flow Regulation on Shallow-Water Habitat Dynamics and Floodplain Connectivity
Our study examined the effects of flow regulation on the spatiotemporal availability of shallow habitat patches with slow current velocity (SSCV patches) and floodplain inundation in the unregulated Yellowstone River and the regulated Missouri River in Montana and North Dakota. We mapped representative sites and used hydraulic models and hydrograph data to describe the frequency and extent of floodplain inundation and the availability of SSCV habitat over time during different water years. In the Yellowstone River the distribution, location, and size of SSCV patches varied but followed an annual pattern that was tied to the snowmelt runoff hydrograph. There was less variation in patch distribution in the Missouri River, and the pattern of habitat availability was influenced by flow regulation. Regulated flows and their effects on channel mor- phology and patterns of vegetation establishment resulted in 3.0–3.5 times less area of inundated woody vegetation during normal and dry years in the Missouri River compared with the Yellow- stone River. The differences we observed in SSCV patch dynamics between rivers may have implications for fish populations and community structure through affecting the survival of early life stages. At a larger scale, the smaller area of vegetation inundated in the Missouri River suggests that nutrient cycling and the ecological benefits associated with a moving littoral zone are reduced by the altered flow and sediment regime in that river. Accurate assessments of the effects of flow alteration and successful efforts to restore riverine ecosystems will require consideration of physical and biotic processes that operate at multiple spatial and temporal scales.
Located in Resources / Climate Science Documents
Emerging Consensus Shows Climate Change Already Having Major Effects on Ecosystems and Species
Plant and animal species are shifting their geographic ranges and the timing of their life events – such as flowering, laying eggs or migrating – at faster rates than researchers documented just a few years ago, according to a technical report on biodiversity and ecosystems used as scientific input for the 2013 Third National Climate Assessment.
Located in News & Events