Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
28 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Changes in winter precipitation extremes for the western United States under a warmer climate as simulated by regional climate models
We find a consistent and statistically significant increase in the intensity of future extreme winter precipitation events over the western United States, as simulated by an ensemble of regional climate models (RCMs) driven by IPCC AR4 global climate models (GCMs). All eight simulations analyzed in this work consistently show an increase in the intensity of extreme winter precipitation with the multi-model mean projecting an area-averaged 12.6% increase in 20-year return period and 14.4% increase in 50-year return period daily precipitation. In contrast with extreme precipitation, the multi-model ensemble shows a decrease in mean winter precipitation of approximately 7.5% in the southwestern US, while the interior west shows less statistically robust increases.
Located in Resources / Climate Science Documents
File PDF document Citizen Involvement in the U.S. Endangered Species Act
Data on listed species refute critiques of citizen involvement in the U.S. Endangered Species Act.
Located in Resources / Climate Science Documents
File PDF document Climate change and the ecologist
The evidence for rapid climate change now seems overwhelming. Global temperatures are predicted to rise by up to 4 °C by 2100, with associated alterations in precipitation patterns. Assessing the consequences for biodiversity, and how they might be mitigated, is a Grand Challenge in ecology.
Located in Resources / Climate Science Documents
File PDF document Climate change impacts on the biophysics and economics of world fisheries
Global marine fisheries are underperforming economically because of overfishing, pollution and habitat degradation. Added to these threats is the looming challenge of climate change. Observations, experiments and simulation models show that climate change would result in changes in primary productivity, shifts in distribution and changes in the potential yield of exploited marine species, resulting in impacts on the economics of fisheries worldwide. Despite the gaps in understanding climate change effects on fisheries, there is sufficient scientific information that highlights the need to implement climate change mitigation and adaptation policies to minimize impacts on fisheries.
Located in Resources / Climate Science Documents
File PDF document Comment: Don’t judge species on their origins
SUMMARY: Conservationists should assess organisms on environmental impact rather than on whether they are natives, argue Mark Davis and 18 other ecologists. FROM THE TEXT: Nativeness is not a sign of evolutionary fitness or of a species having positive effects.The insect currently suspected to be killing more trees than any other in North Americais the native mountain pine beetle Dendroctonus ponderosae. Classifying biota according to their adherence to cultural standards of belonging, citizenship, fair play and morality does not advance our understanding of ecology. Over the past few decades, this perspective has led many conservation and restoration efforts down paths that make little ecological or economic sense
Located in Resources / Climate Science Documents
Designing reserves for biodiversity
What is the best way to design a new conservation reserve? There are multiple factors to consider, including species diversity, spatial extent, and future climate changes.
Located in News & Events
File PDF document Effect of Risk Aversion on Prioritizing Conservation Projects
Agencies making decisions about what threat mitigation actions to take to save which species frequently face the dilemma of whether to invest in actions with high probability of success and guaranteed benefits or to choose projects with a greater risk of failure that might provide higher benefits if they succeed. The answer to this dilemma lies in the decision maker’s aversion to risk—their unwillingness to accept uncertain outcomes. Little guidance exists on how risk preferences affect conservation investment priorities. Using a prioritization approach based on cost effectiveness, we compared 2 approaches: a conservative probability threshold approach that excludes investment in projects with a risk of management failure greater than a fixed level, and a variance-discounting heuristic used in economics that explicitly accounts for risk tolerance and the probabilities of management success and failure. We applied both approaches to prioritizing projects for 700 of New Zealand’s threatened species across 8303 management actions. Both decision makers’ risk tolerance and our choice of approach to dealing with risk preferences drove the prioritization solution (i.e., the species selected for management). Use of a probability threshold minimized uncertainty, but more expensive projects were selected than with variance discounting, which maximized expected benefits by selecting the management of species with higher extinction risk and higher conservation value. Explicitly incorporating risk preferences within the decision making process reduced the number of species expected to be safe from extinction because lower risk tolerance resulted in more species being excluded from management, but the approach allowed decision makers to choose a level of acceptable risk that fit with their ability to accommodate failure. We argue for transparency in risk tolerance and recommend that decision makers accept risk in an adaptive management framework to maximize benefits and avoid potential extinctions due to inefficient allocation of limited resources. Keywords: conservation decisionmaking,cost-effectiveness analysis, management effectiveness,Project Prioritization Protocol, risk analysis, risk tolerance, threatened species, uncertainty
Located in Resources / Climate Science Documents
File PDF document Effects of Management on Carbon Sequestration in Forest Biomass in Southeast Alaska
The Tongass National Forest (Tongass) is the largest national forest and largest area of old-growth forest in the United States. Spatial geographic informa- tion system data for the Tongass were combined with forest inventory data to estimate and map total carbon stock in the Tongass; the result was 2.8±0.5PgC,or8%of the total carbon in the forests of the conterminous USA and 0.25% of the carbon in global forest vegetation and soils. Cumulative net carbon loss from the Tongass due to management of the forest for the period 1900–95 was estimated at 6.4–17.2 Tg C. Using our spatially explicit data for carbon stock and net flux, we modeled the potential effect of five management regimes on future net carbon flux. Estimates of net carbon flux were sensitive to projections of the rate of carbon accumulation in second-growth forests and to the amount of carbon left in standing biomass after harvest. Projections of net carbon flux in the Tongass range from 0.33 Tg C annual sequestration to 2.3 Tg C annual emission for the period 1995–2095. For the period 1995–2195, net flux estimates range from 0.19 Tg C annual sequestra- tion to 1.6 Tg C annual emission. If all timber harvesting in the Tongass were halted from 1995 to 2095, the economic value of the net carbon sequestered during the 100-year hiatus, assuming $20/Mg C, would be $4 to $7 million/y (1995 US dollars). If a prohibition on logging were extended to 2195, the annual economic value of the carbon sequestered would be largely unaffected ($3 to $6 million/y). The potential annual economic value of carbon sequestration with management maxi- mizing carbon storage in the Tongass is comparable to revenue from annual timber sales historically authorized for the forest. Key words: carbon sequestration; geographic information system; climate change; forest management; Alaska.
Located in Resources / Climate Science Documents
File PDF document Fear of failure in conservation: The problem and potential solutions to aid conservation of extremely small populations
The potential for extirpation of extremely small populations (ESPs) is high due to their vulnerability to demographic and environmental stochasticity and negative impacts of human activity. We argue that conservation actions that could aid ESPs are sometimes delayed because of a fear of failure. In human psychology, the fear of failure is composed of several distinct cognitive elements, including ‘‘uncertainty about the future’’ and ‘‘upsetting important others.’’ Uncertainty about the future is often driven by information obstacles in conservation: information is either not easily shared among practitioners or information is lacking. Whereas, fear of upsetting important others can be due to apprehension about angering constituents, peers, funders, and other stakeholders. We present several ways to address these fears in hopes of improving the conservation process. We describe methods for increased information sharing and improved decision-making in the face of uncertainty, and recommend a shift in focus to cooperative actions and improving methods for evaluating success. Our hope is that by tackling stumbling blocks due to the apprehension of failure, conservation and management organizations can take steps to move from fear to action.
Located in Resources / Climate Science Documents
File ECMAScript program Golden-winged Warbler Habitat: Best Management Practices
The goal of this BMP is to present management prescriptions to forest managers interested in providing breeding habitat for Golden-winged Warblers through management actions associated with timber harvesting. We provide a science-based approach in an adaptive management framework to understanding breeding habitat use of Golden-winged Warblers across a range of timber harvest prescriptions in Pennsylvania and Maryland. This document is intended for use by state and private foresters, biologists, and other land managers. We anticipate that this BMP is the first document in a series that will address management of other early successional habitat used by Golden-winged Warblers including old fields, reclaimed strip mines, scrub oak barrens, and aspen cuts.
Located in Resources / General Resources Holdings