Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
13 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File application/x-troff-ms Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams
Stream-dwelling species in the U.S. southern Appalachian Mountains region are particularly vulnerable to climate change and acidification. The objectives of this study were to quantify the spatial extent of contemporary suitable habitat for acid- and thermally sensitive aquatic species and to forecast future habitat loss resulting from expected temperature increases on national forest lands in the southern Appalachian Mountain region. The goal of this study was to help watershed managers identify and assess stream reaches that are potentially vulnerable to warming, acidification, or both. To our knowledge, these results represent the first regional assessment of aquatic habitat suitability with respect to the combined effects of stream water temperature and acid-base status in the United States. Statistical models were developed to predict July mean daily maximum water temperatures and air-water tem- perature relations to determine potential changes in future stream water temperatures. The length of stream considered suitable habitat for acid- and thermally sensitive species, based on temperature and acid neutralizing capacity thresholds of 20°C and 50 μeq/L, was variable throughout the national forests considered. Stream length displaying temperature above 20°C was generally more than five times greater than the length predicted to have acid neutralizing capacity below 50 μeq/L. It was uncommon for these two stressors to occur within the same stream segment. Results suggested that species’ distributional shifts to colder, higher elevation habitats under a warming climate can be constrained by acidification of headwater streams. The approach used in this study can be applied to evaluate climate change impacts to stream water resources in other regions.
Located in Resources / Climate Science Documents
File Accounting for groundwater in stream fish thermal habitat responses to climate change
Forecasting climate change effects on aquatic fauna and their habitat requires an understanding of how water temperature responds to changing air temperature (i.e., thermal sensitivity). Previous efforts to forecast climate effects on brook trout (Salvelinus fontinalis) habitat have generally assumed uniform air–water temperature relationships over large areas that cannot account for groundwater inputs and other processes that operate at finer spatial scales. We developed regression models that accounted for groundwater influences on thermal sensitivity from measured air–water temperature relationships within forested watersheds in eastern North America (Shenandoah National Park, Virginia, USA, 78 sites in nine watersheds). We used these reach-scale models to forecast climate change effects on stream temperature and brook trout thermal habitat, and compared our results to previous forecasts based upon large-scale models. Observed stream temperatures were generally less sensitive to air temperature than previously assumed, and we attribute this to the moderating effect of shallow groundwater inputs. Predicted groundwater temperatures from air–water regression models corresponded well to observed groundwater temperatures elsewhere in the study area. Predictions of brook trout future habitat loss derived from our fine-grained models were far less pessimistic than those from prior models developed at coarser spatial resolutions. However, our models also revealed spatial variation in thermal sensitivity within and among catchments resulting in a patchy distribution of thermally suitable habitat. Habitat fragmentation due to thermal barriers therefore may have an increasingly important role for trout population viability in headwater streams. Our results demonstrate that simple adjustments to air–water temperature regression models can provide a powerful and cost-effective approach
Located in Resources / Climate Science Documents
LCC Science Helping to Target Restoration Sites to Improve Water Quality in the Susquehanna and Potomac Watersheds
The Natural Resources Conservation Service, the EPA, and the Commonwealth of Pennsylvania are investing $28 million in restoration activities – from wetlands to riparian buffers to floodplain reconnection - in the Susquehanna and Potomac watershed to improve water quality.
Located in News & Events