Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
120 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document A Measurable Planetary Boundary for the Biosphere
Terrestrial net primary (plant) production provides a measurable boundary for human consumption of Earth’s biological resources.
Located in Resources / Climate Science Documents
File PDF document Biodiversity and Climate Change
Efforts to elucidate the effect of climate change on biodiversity with detailed data sets and refined models reach novel conclusions.
Located in Resources / Climate Science Documents
File PDF document A-maize-ing Diversity
Analysis of a new maize resource reveals that a large number of genetic loci with small effects may underlie the wide variation seen in traits such as flowering time.
Located in Resources / Climate Science Documents
File PDF document Biotic Multipliers of Climate Change
A focus on species interactions may improve predictions of the effects of climate change on ecosystems.
Located in Resources / Climate Science Documents
File ECMAScript program All Downhill From Here?
Biologists say climate change may already be affecting high-mountain ecosystems around the world, where plants and animals adapted to cold, barren conditions now face higher temperatures and a surge of predators and competitors
Located in Resources / Climate Science Documents
File PDF document Aeolian process effects on vegetation communities in an arid grassland ecosystem
Many arid grassland communities are changing from grass dominance to shrub dominance, but the mechanisms involved in this conversion process are not completely understood. Aeolian processes likely contribute to this conversion from grassland to shrubland. The purpose of this research is to provide information regarding how vegetation changes occur in an arid grassland as a result of aeolian sediment transport. The experimental design included three treatment blocks, each with a 25 × 50 m area where all grasses, semi-shrubs, and perennial forbs were hand removed, a 25 × 50 m control area with no manipulation of vegetation cover, and two 10 × 25 m plots immediately downwind of the grass-removal and control areas in the prevailing wind direction, 19◦ north of east, for measuring vegetation cover. Aeolian sediment flux, soil nutrients, and soil seed bank were monitored on each treatment area and downwind plot. Grass and shrub cover were measured on each grass-removal, control, and downwind plot along continuous line transects as well as on 5 × 10 m subplots within each downwind area over four years following grass removal. On grass-removal areas, sediment flux increased significantly, soil nutrients and seed bank were depleted, and Prosopis glandulosa shrub cover increased compared to controls. Additionally, differential changes for grass and shrub cover were observed for plots downwind of vegetation-removal and control areas. Grass cover on plots downwind of vegetation-removal areas decreased over time (2004–2007) despite above average rainfall throughout the period of observation, while grass cover increased downwind of control areas; P. glandulosa cover increased on plots downwind of vegetation-removal areas, while decreasing on plots downwind of control areas. The relationships between vegetation changes and aeolian sediment flux were significant and were best described by a logarithmic function, with decreases in grass cover and increases in shrub cover occurring with small increases in aeolian sediment flux
Located in Resources / Climate Science Documents
File PDF document An Uncertain Future for Soil Carbon
Predictions of how rapidly the large amounts of carbon stored as soil organic matter will respond to warming are highly uncertain (1). Organic matter plays a key role in determining the physical and chemical properties of soils and is a major reservoir for plant nutrients. Understanding how fast organic matter in soils can be built up and lost is thus critical not just for its net effect on the atmospheric CO2 concentration but for sustaining other soil functions, such as soil fertility, on which societies and ecosystems rely. Recent analytic advances are rapidly improving our understanding of the complex and interacting factors that control the age and form of organic matter in soils, but the processes that destabilize organic matter in response to disturbances (such as warming or land use change) are poorly understood
Located in Resources / Climate Science Documents
File PDF document Emerging Techniques for Soil Carbon measurements
Soil carbon sequestration is one approach to mitigate greenhouse gases. However, to reliably assess the quantities sequestered as well as the chemical structure of the soil carbon, new methods and equipment are needed. These methods and equipment must allow large scale measurements and the construction of dynamic maps. This paper presents results from some emerging techniques to measure carbon quantity and stability. Each methodology has specific capabilities and their combined use along with other analytical tools will improve soil organic matter research. New opportunities arise with the development and application of portable equipment, based on spectroscopic methods, as laser-induced fluorescence, laser-induced breakdown spectroscopy and near infrared, for in situ carbon measurements in different ecosystems. These apparatus could provide faster and lower cost field analyses thus improving soil carbon contents and quality databases. Improved databases are essential to model carbon balance, thus reducing the uncertainties generated through the extrapolation of limited data.
Located in Resources / Climate Science Documents
File PDF document Barking up the Wrong Tree? Forest Sustainability in the wake of Emerging Bioenergy Policies
The spotted owl controversy revealed that federal forest management policies alone could not guarantee functioning forest ecosystems. At the same time as the owl’s listing, agreements made at the 1992 Rio Earth Summit highlighted the mounting pressures on natural systems, thus unofficially marking the advent of sustainable forestry management (SFM).2 While threats to forest ecosystems from traditional logging practices certainly remain,3 developed and developing countries have shifted generally toward more sustainable forest management, at least on paper, including codifying various sustainability indicators in public laws.4 Nevertheless, dark policy clouds are gathering on the forest management horizon. Scientific consensus has grown in recent years around a new and arguably more onerous threat to all of the world’s ecosystems—climate change. Governments’ responses have focused on bioenergy policies aimed at curtailing anthropogenic greenhouse gas (GHG) emissions, and mandatesfor renewables in energy supplies now abound worldwide. [Vol. 37:000
Located in Resources / Climate Science Documents
File PDF document Amazon Basin climate under global warming: the role of the sea surface temperature
The Hadley Centre coupled climate–carbon cycle model (HadCM3LC) predicts loss of the Amazon rainforest in response to future anthropogenic greenhouse gas emissions. In this study, the atmospheric component of HadCM3LC is used to assess the role of simulated changes in midtwenty-first century sea surface temperature (SST) in Amazon Basin climate change. When the full HadCM3LC SST anomalies (SSTAs) are used, the atmosphere model reproduces the Amazon Basin climate change exhibited by HadCM3LC, including much of the reduction in Amazon Basin rainfall. This rainfall change is shown to be the combined effect of SSTAs in both thetropical Atlantic and the Pacific, with roughly equal contributions from each basin. The greatest rainfall reduction occurs from May to October, outside of the mature South American monsoon (SAM) season. This dry season response is the combined effect of a more rapid warming of the tropical North Atlantic relative to the south, and warm SSTAs in the tropical east Pacific. Conversely, a weak enhancement of mature SAM season rainfall in response to Atlantic SST change is suppressed by the atmospheric response to Pacific SST. This net wet season response is sufficient to prevent dry season soil moisture deficits from being recharged through the SAM season, leading to a perennial soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary productivity (NPP). A further 23% NPP reduction occurs in response to a 3.58C warmer air temperature associated with a global mean SST warming.
Located in Resources / Climate Science Documents