Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
72 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Domesticated Nature: Shaping Landscapes and Ecosystems for Human Welfare
Like all species, humans have exercised their impulse to perpetuate and propagate themselves. In doing so, we have domesticated landscapes and ecosystems in ways that enhance our food supplies, reduce exposure to predators and natural dangers, and promote commerce. On average, the net benefits to humankind of domesticated nature have been positive. We have, of course, made mistakes, causing unforeseen changes in ecosystem attributes, while leaving few, if any, truly wild places on Earth. Going into the future, scientists can help humanity to domesticate nature more wisely by quantifying the tradeoffs among ecosystem services, such as how increasing the provision of one service may decrease ecosystem resilience and the provision of other services.
Located in Resources / Climate Science Documents
File PDF document Carbon debt and carbon sequestration parity in forest bioenergy production
The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and serve as a substitute for fossil fuels, though such a practice could reduce terrestrial C storage and thereby increase atmospheric CO2 concentrations in the near-term. Here, we used an ecosystem simulation model to ascertain the effectiveness of using forest bioenergy as a substitute for fossil fuels, drawing from a broad range of land-use histories, harvesting regimes, ecosystem characteristics, and bioenergy conversion effi- ciencies. Results demonstrate that the times required for bioenergy substitutions to repay the C Debt incurred from biomass harvest are usually much shorter (< 100 years) than the time required for bioenergy production to substitute the amount of C that would be stored if the forest were left unharvested entirely, a point we refer to as C Sequestration Parity. The effectiveness of substituting woody bioenergy for fossil fuels is highly dependent on the factors that determine bioenergy conversion efficiency, such as the C emissions released during the har- vest, transport, and firing of woody biomass. Consideration of the frequency and intensity of biomass harvests should also be given; performing total harvests (clear-cutting) at high-frequency may produce more bioenergy than less intensive harvesting regimes but may decrease C storage and thereby prolong the time required to achieve C Sequestration Parity. Keywords: bioenergy, biofuel, C cycle, C sequestration, forest management
Located in Resources / Climate Science Documents
File PDF document Controls on Annual Forest Carbon Storage: Lessons from the Past and Predictions for the Future
The temperate forests of North America may play an important role in future carbon (C) sequestration strategies. New, multiyear, ecosystem-scale C cycling studies are providing a process-level understanding of the factors controlling annual forest C storage. Using a combination of ecological and meteorological methods, we quantified the response of annual C storage to historically widespread disturbances, forest succession, and climate variation in a common forest type of the upper Great Lakes region. At our study site in Michigan, repeated clear-cut harvesting and fire disturbance resulted in a lasting decrease in annual forest C storage. However, climate variation exerts a strong control on C storage as well, and future climate change may substantially reduce annual C storage by these forests. Annual C storage varies through ecological succession by rising to a maximum and then slowly declining in old-growth stands. Effective forest C sequestration requires the management of all C pools, including traditionally managed pools such as bole wood and also harvest residues and soils. Keywords: forests, carbon, climate change, succession, disturbance
Located in Resources / Climate Science Documents
File PDF document Challenges of ecological restoration: Lessons from forests in northern Europe
The alarming rate of ecosystem degradation has raised the need for ecological restoration throughout different biomes and continents. North European forests may appear as one of the least vulnerable ecosystems from a global perspective, since forest cover is not rapidly decreasing and many ecosystem services remain at high level. However, extensive areas of northern forests are heavily exploited and have lost a major part of their biodiversity value. There is a strong requirement to restore these areas towards a more natural condition in order to meet the targets of the Convention on Biological Diversity. Several northern countries are now taking up this challenge by restoring forest biodiversity with increasing intensity. The ecology and biodiversity of boreal forests are relatively well understood making them a good model for restoration activities in many other forest ecosystems. Here we introduce northern forests as an ecosystem, discuss the historical and recent human impact and provide a brief status report on the ecological restoration projects and research already conducted there. Based on this discussion, we argue that before any restoration actions commence, the ecology of the target ecosystem should be established with the need for restoration carefully assessed and the outcome properly monitored. Finally, we identify the most important challenges that need to be solved in order to carry out efficient restoration with powerful and long-term positive impacts on biodiversity: coping with unpredictability, maintaining connectivity in time and space, assessment of functionality, management of conflicting interests and social restrictions and ensuring adequate funding.
Located in Resources / Climate Science Documents
File ECMAScript program Don't Blame the Beetles
Bark beetles have devastated western forests, but that may not mean more severe fires.
Located in Resources / Climate Science Documents
File PDF document Carbon sequestration in the U.S. forest sector from 1990 to 2010
From 1990 through 2005, the forest sector (including forests and wood products) sequestered an average 162 Tg C year1 . In 2005, 49% of the total forest sector sequestration was in live and dead trees, 27% was in wood products in landfills, with the remainder in down dead wood, wood products in use, and forest floor and soil. The pools with the largest carbon stocks were not the same as those with the largest sequestration rates, except for the tree pool. For example, landfilled wood products comprise only 3% of total stocks but account for 27% of carbon sequestration. Conversely, forest soils comprise 48% of total stocks but account for only 2% of carbon sequestration. For the tree pool, the spatial pattern of carbon stocks was dissimilar to that of carbon flux. On an area basis, tree carbon stocks were highest in the Pacific Northwest, while changes were generally greatest in the upper Midwest and the Northeast. Net carbon sequestration in the forest sector in 2005 offset 10% of U.S. CO2 emissions. In the near future, we project that U.S. forests will continue to sequester carbon at a rate similar to that in recent years. Based on a comparison of our estimates to a compilation of land-based estimates of non-forest carbon sinks from the literature, we estimate that the conterminous U.S. annually sequesters 149–330 Tg C year1. Forests, urban trees, and wood products are responsible for 65–91% of this sink.
Located in Resources / Climate Science Documents
File PDF document Challenges in the conservation, rehabilitation and recovery of native stream salmonid populations: beyond the 2010 Luarca symposium
– In May 2010, I chaired a session on challenges to salmonid conservation at the international symposium ‘Advances in the population ecology of stream salmonids’ in Luarca, Spain. I suggested that in addition to scientific challenges, a major challenge will be improving the links between ecologists, conservationists and policy makers. Because the Luarca symposium focused mainly on ecological research, little time was explicitly devoted to conservation. My objective in this paper is to further discuss the role of ecological research in informing salmonid conservation. I begin with a brief overview of research highlights from the symposium. I then use selected examples to show that ecological research has already contributed much towards informing salmonid conservation, but that ecologists will always be faced with limitations in their predictive ability. I suggest that conservation will need to move forward regardless of these limitations, and I call attention to some recent efforts wherein ecological research has played a crucial role. I conclude that ecologists should take urgent action to ensure that their results are availableto inform resource managers, conservation organisations and policy makers regarding past losses and present threats to native, locally-adapted salmonid stocks.
Located in Resources / Climate Science Documents
File PDF document DO CARBON OFFSETS WORK? THE ROLE OF FOREST MANAGEMENT IN GREENHOUSE GAS MITIGATION
As forest carbon offset projects become more popular, professional foresters are providing their expertise to support them. But when several members of the Society of American Foresters questioned the science and assumptions used to design the projects, the organization decided to convene a task force to examine whether these projects can provide the intended climate benefits.The authors emphasize the carbon-storage benefits of using wood products in place of nonrenewable, energy-intensive materials and using woodbased energy instead of fossil fuels.
Located in Resources / Climate Science Documents
File PDF document Carbon Mitigation by Biofuels or by Saving and Restoring Forests?
The carbon sequestered by restoring forests is greater than the emissions avoided by the use of the liquid biofuels.
Located in Resources / Climate Science Documents
File PDF document Combined climate and carbon-cycle effects of large-scale deforestation
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earth’s climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeo- chemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth’s climate, because the warming carbon-cycle effects of de- forestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons un-related to climate.
Located in Resources / Climate Science Documents