Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
69 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File Biophysical and Biogeochemical Responses to Climate Change Depend on Dispersal and Migration
Different species, populations, and individuals disperse and migrate at different rates. The rate of movement that occurs in response to changes in climate, whether fast or slow, will shape the distribution of natural ecosystems in the decades to come. Moreover, land-use patterns associated with urban, suburban, rural, and agricultural development will complicate ecosystem adaptation to climate change by hindering migration. Here we examine how vegetation’s capacity to disperse and migrate may affect the biophysical and biogeochemical characteristics of the land surface under anthropogenic climate change. We demonstrate that the effectiveness of plant migration strongly influences carbon storage, evapotranspiration, and the absorption of solar radiation by the land surface. As a result, plant migration affects the magnitude, and in some cases the sign, of feedbacks from the land surface to the climate system. We conclude that future climate projections depend on much better understanding of and accounting for dispersal and migration. Keywords: vegetation–climate feedback, global change, carbon storage, evapotranspiration, surface radiation
Located in Resources / Climate Science Documents
File PDF document Biotic Drivers of Stream Planform: Implications for Understanding the Past and Restoring the Future
Traditionally, stream channel planform has been viewed as a function of larger watershed and valley-scale physical variables, including valley slope, the amount of discharge, and sediment size and load. Biotic processes serve a crucial role in transforming channel planform among straight, braided, meandering, and anabranching styles by increasing stream-bank stability and the probability of avulsions, creating stable multithread (anabranching) channels, and affecting sedimentation dynamics. We review the role of riparian vegetation and channel-spanning obstructions—beaver dams and logjams—in altering channel–floodplain dynamics in the southern Rocky Mountains, and we present channel planform scenarios for combinations of vegetation and beaver populations or old-growth forest that control logjam formation. These conceptual models provide understanding of historical planform variability throughout the Holocene and outline the implications for stream restoration or management in broad, low-gradient headwater valleys, which are important for storing sediment, carbon, and nutrients and for supporting a diverse riparian community. Keywords: stream planform, riparian vegetation, beaver, old-growth forest, restoration
Located in Resources / Climate Science Documents
File PDF document BOTANY AND A CHANGING WORLD: INTRODUCTION TO THE SPECIAL ISSUE ON GLOBAL BIOLOGICAL CHANGE
The impacts of global change have heightened the need to understand how organisms respond to and influence these changes. Can we forecast how change at the global scale may lead to biological change? Can we identify systems, processes, and organisms that are most vulnerable to global changes? Can we use this understanding to enhance resilience to global changes? This special issue on global biological change emphasizes the integration of botanical information at different biological levels to gain perspective on the direct and indirect effects of global change. Contributions span a range of spatial scales and include both ecological and evolutionary timescales and highlight work across levels of organization, including cellular and physiological processes, individuals, populations, and ecosystems. Integrative botanical approaches to global change are critical for the eco- logical and evolutionary insights they provide and for the implications these studies have for species conservation and ecosys- tem management. Key words: community dynamics; flowering phenology; functional traits; global biological change; invasive species; land-use patterns; plant–microbial interactions; species interactions.
Located in Resources / Climate Science Documents
File PDF document Can a collapse of global civilization be avoided?
Environmental problems have contributed to numerous collapses of civilizations in the past. ... But today, for the first time, humanity’s global civilization—the worldwide,increasingly interconnected, highly technological society in which we all are to one degree or another, embedded—is threatened with collapse by an array of environmental problems. Humankind finds itself engaged in what Prince Charles described as ‘an act of suicide on a grand scale’ [4], facing what the UK’s Chief Scientific Advisor John Beddington called a ‘perfect storm’ of environmental problems [5]. The most serious of these problems show signsof rapidly escalating severity, especially climate disruption.
Located in Resources / Climate Science Documents
File PDF document Carbon debt and carbon sequestration parity in forest bioenergy production
The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and serve as a substitute for fossil fuels, though such a practice could reduce terrestrial C storage and thereby increase atmospheric CO2 concentrations in the near-term. Here, we used an ecosystem simulation model to ascertain the effectiveness of using forest bioenergy as a substitute for fossil fuels, drawing from a broad range of land-use histories, harvesting regimes, ecosystem characteristics, and bioenergy conversion effi- ciencies. Results demonstrate that the times required for bioenergy substitutions to repay the C Debt incurred from biomass harvest are usually much shorter (< 100 years) than the time required for bioenergy production to substitute the amount of C that would be stored if the forest were left unharvested entirely, a point we refer to as C Sequestration Parity. The effectiveness of substituting woody bioenergy for fossil fuels is highly dependent on the factors that determine bioenergy conversion efficiency, such as the C emissions released during the har- vest, transport, and firing of woody biomass. Consideration of the frequency and intensity of biomass harvests should also be given; performing total harvests (clear-cutting) at high-frequency may produce more bioenergy than less intensive harvesting regimes but may decrease C storage and thereby prolong the time required to achieve C Sequestration Parity. Keywords: bioenergy, biofuel, C cycle, C sequestration, forest management
Located in Resources / Climate Science Documents
File PDF document Carbon Dynamics of the Forest Sector
Main points: The basic ecosystem science behind carbon dynamics in forests is relatively straightforward (really!).This science doesn’t seem to be applied very routinely in the policy arena. This mismatch is undermining the potential of the forest sector in helping to mitigate greenhouse gases in the atmosphere
Located in Resources / Climate Science Documents
File PDF document Carbon in idle croplands
The collapse of the Soviet Union had diverse consequences, not least the abandonment of crop cultivation in many areas. One result has been the vast accumulation of soil organic carbon in the areas affected.
Located in Resources / Climate Science Documents
File PDF document Classification of Climate Change-Induced Stresses on Biological Diversity
Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. Keywords: adaptation, conservation, strategies,adaptive management,climatechange,conservation planning, conservation targets, hierarchical framework, threats to biological diversity
Located in Resources / Climate Science Documents
File PDF document Climate change and disruptions to global fire activity
Future disruptions to fire activity will threaten ecosystems and human well-being throughout the world, yet there are few fire projections at global scales and almost none from a broad range of global climate models (GCMs). Here we integrate global fire datasets and environmental covariates to build spatial statistical models of fire probability at a 0.58 resolution and examine environmental controls on fire activity. Fire models are driven by climate norms from 16 GCMs (A2 emissions scenario) to assess the magnitude and direction of change over two time periods, 2010–2039 and 2070–2099. From the ensemble results, we identify areas of consensus for increases or decreases in fire activity, as well as areas where GCMs disagree. Although certain biomes are sensitive to constraints on biomass productivity and others to atmospheric conditions promoting combustion, substantial and rapid shifts are projected for future fire activity across vast portions of the globe. In the near term, the most consistent increases in fire activity occur in biomes with already somewhat warm climates; decreases are less pronounced and concentrated primarily in a few tropical and subtropical biomes. However, models do not agree on the direction of near- term changes across more than 50% of terrestrial lands, highlighting major uncertainties in the next few decades. By the end of the century, the magnitude and the agreement in direction of change are projected to increase substantially. Most far-term model agreement on increasing fire probabilities (;62%) occurs at mid- to high-latitudes, while agreement on decreasing probabilities (;20%) is mainly in the tropics. Although our global models demonstrate that long-term environmental norms are very successful at capturing chronic fire probability patterns, future work is necessary to assess how much more explanatory power would be added through interannual variation in climate variables. This study provides a first examination of global disruptions to fire activity using an empirically based statistical framework and a multi-model ensemble of GCM projections, an important step toward assessing fire-related vulnerabilities to humans and the ecosystems upon which they depend. Key words: climatic constraints; ensemble model uncertainty; flammability; global climate models (GCM); GCM agreement; global fire probabilities; resources to burn; spatial statistical models; species distribution models.
Located in Resources / Climate Science Documents
File PDF document Climate Change and Existing Law: A Survey of Legal Issues Past, Present, and Future
Summary: This report surveys existing law for legal issues that have arisen, or may arise in the future, on account of climate change and government responses thereto. At the threshold of many climate-change-related lawsuits are two barriers—whether the plaintiff has standing to sue and whether the claim being made presents a political question. Both barriers have forced courts to apply amorphous standards in a new and complex context. Efforts to mitigate climate change—that is, reduce greenhouse gas (GHG) emissions—have spawned a host of legal issues. The Supreme Court resolved a big one in 2007: the Clean Air Act (CAA), it said, authorizes EPA to regulate GHG emissions. EPA’s subsequent efforts to carry out that authority have been sustained by the D.C. Circuit. Another issue is whether EPA’s “endangerment finding” for GHG emissions from new motor vehicles will compel EPA to move against GHG emissions from other sources, and, if EPA does, whether the CAA authorizes cap- and-trade programs. Still other mitigation issues are (1) the role of the Endangered Species Act in addressing climate change; (2) how climate change must be considered under the National Environmental Policy Act; (3) liability and other questions raised by carbon capture and sequestration; (4) constitutional constraints on land use regulation and state actions to control GHG emissions; and (5) whether the public trust doctrine applies to the atmosphere. Liability for harms allegedly caused by climate change has raised another crop of legal issues. The Supreme Court decision that the CAA bars federal judges from imposing their own limits on GHG emissions from power plants has led observers to ask: Can plaintiffs alleging climate change harms still seek monetary damages, and are state law claims still allowed? The two rulings so far say no to the former, but split on the latter. Questions of insurance policy coverage are also likely to be litigated. Finally, the applicability of international law principles to climate change has yet to be resolved.Water shortages thought to be induced by climate change likely will lead to litigation over the nature of water rights. Shortages have already prompted several lawsuits over whether cutbacks in water delivered from federal projects effect Fifth Amendment takings or breaches of contract. Sea level rise and extreme precipitation linked to climate change raise questions as to (1) the effect of sea level rise on the beachfront owner’s property line; (2) whether public beach access easements migrate with the landward movement of beaches; (3) design and operation of federal levees; and (4) government failure to take preventive measures against climate change harms. Other adaptation responses to climate change raising legal issues, often property rights related, are beach armoring (seawalls, bulkheads, etc.), beach renourishment, and “retreat” measures. Retreat measures seek to move existing development away from areas likely to be affected by floods and sea level rise, and to discourage new development there. Natural disasters to which climate change contributes may prompt questions as to whether response actions taken in an emergency are subject to relaxed requirements and, similarly, as to the rebuilding of structures destroyed by such disasters just as they were before. Finally, immigration and refugee law appear not to cover persons forced to relocate because of climate change impacts such as drought or sea level rise.
Located in Resources / Climate Science Documents