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Response of snow-dependent hydrologic extremes
to continued global warming
Noah S. Diffenbaugh1*, Martin Scherer1 and Moetasim Ashfaq2

Snow accumulation is critical for water availability in the
Northern Hemisphere1,2, raising concern that global warming
could have important impacts on natural and human systems
in snow-dependent regions1,3. Although regional hydrologic
changes have been observed (for example, refs 1,3–5), the
time of emergence of extreme changes in snow accumulation
and melt remains a key unknown for assessing climate-
change impacts3,6,7. We find that the CMIP5 global climate
model ensemble exhibits an imminent shift towards low
snow years in the Northern Hemisphere, with areas of
western North America, northeastern Europe and the Greater
Himalaya showing the strongest emergence during the near-
term decades and at 2 ◦C global warming. The occurrence of
extremely low snow years becomes widespread by the late
twenty-first century, as do the occurrences of extremely high
early-season snowmelt and runoff (implying increasing flood
risk), and extremely low late-season snowmelt and runoff
(implying increasing water stress). Our results suggest that
many snow-dependent regions of the Northern Hemisphere
are likely to experience increasing stress from low snow years
within the next three decades, and from extreme changes in
snow-dominated water resources if global warming exceeds
2 ◦C above the pre-industrial baseline.

Water resources inmost land areas north of 30◦N are dependent
on natural water storage provided by snowpack1,2, with water
accumulated in the solid phase during the cold season and released
in the liquid phase during warm events and the warm season.
Abnormally warm conditions increase the fraction of accumulated
snow that melts and the fraction of precipitation that falls as rain,
resulting in low seasonal snow accumulation, high cold-season
surface runoff and low warm-season surface runoff3. Such events
exert stress on a wide array of natural and human systems,
including through increased pest pressure8, wild fires9 and die-off10
in forest ecosystems; decreased water supply for agriculture, energy
generation, human consumption and riparian ecosystems2,11,12;
and decreased snow availability for recreation13. Given these
vulnerabilities and the critical sensitivity of snow to temperature,
global warming is expected to impact natural and human systems
in snow-dependent regions1,3,13. However, because internal climate
system variability strongly influences cold-season temperature and
precipitation14,15, the pattern of emergence of robust changes in the
extremes of snow accumulation and melt remains an important
uncertainty for both adaptation andmitigation decisions3.

We analyse snow-related variables from the CMIP5 Rep-
resentative Concentration Pathway 8.5(RCP8.5) global climate
model experiment16 (see Methods). Of the Intergovernmental

1Department of Environmental Earth System Science and Woods Institute for the Environment, Stanford University, 473 Via Ortega Stanford, California
94305-4216, USA, 2Climate Change Science Institute, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831-6301, USA.
*e-mail: diffenbaugh@stanford.edu.

Panel on Climate Change RCPs, RCP8.5 exhibits the high-
est levels of forcing and global warming at the end of the
twenty-first century, with radiative forcing reaching ∼8.5Wm−2,
greenhouse-gas concentrations exceeding 1,370 ppm CO2-e
(ref. 17) and median global warming reaching 4.9 ◦C above the
pre-industrial baseline18.

Given the importance of 1 April snow water equivalent7,19,20
(SWE), we focus our snow accumulation analyses on the monthly
mean March SWE (see Methods). Although the CMIP5 ensemble
captures the observed geographic distribution of snow occurrence1
(Supplementary Fig. S1), the ensemble shows substantial biases in
the simulated baseline March SWE, with all nine of our illustrative
regions exhibiting at least a half order of magnitude range in
model agreement with the observational mean and/or interannual
variability (Fig. 1; see Methods for description of the observational
snow data). However, in spite of the substantial disagreement
with observations, there is substantial agreement in the simulated
fraction of March SWE remaining during all three twenty-first-
century periods, with the ensemble mean exceeding 2 standard
deviations of the ensemble variability in all nine regions (except
the western US in 2070–2099 and central Asia in 2040–2069 and
2070–2099; Fig. 1 and Supplementary Figs S2 and S3).

The fact that the CMIP5 ensemble exhibits a robust response of
regional snow accumulation to elevated greenhouse forcing moti-
vates exploration of potential changes in snow-related hydrologic
extremes. We begin by analysing the percentage of years in which
March SWE falls below the simulated 1976–2005median value (low
years) and minimum value (extremely low years; Fig. 2). The oc-
currence of low years intensifies throughout most snow-dominated
areas1 of the Northern Hemisphere during the twenty-first century,
reaching greater than 80% over most of North America, western
Eurasia and southeastern Eurasia during the 2070–2099 period. The
areas of North America and Eurasia that exhibit peak occurrence of
low snow years also exhibit peak occurrence of extremely low snow
years, including greater than 20% during the 2040–2069 period
and 50% during the 2070–2099 period. (The simulated change in
extremely low years is very similar between March and the other
cold-seasonmonths; Supplementary Fig. S4.)

The mean changes in low snow years are greater than twice
the inter-model and intra-model standard deviation over much
of North America, western Eurasia, southeastern Eurasia and
northeastern Eurasia beginning in the 2040–2069 period (Fig. 2
and Supplementary Figs S7 and S8). Furthermore, the mean
changes in extremely low years are greater than the inter-
model standard deviation—and greater than twice the intra-model
standard deviation—over much of North America, western Eurasia
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Figure 1 | Comparison of model realizations in the baseline and late-twenty-first-century periods. Each circle shows an individual realization (56
realizations from 26 models; Supplementary Table S1), plotted against that realization’s agreement with the observational mean and interannual variability
of March SWE in the 1979–2005 period. Colours show the fraction of 1976–2005 March SWE remaining in the 2070–2099 period of RCP 8.5. The
agreement in the fractional change in March SWE between the 56 realizations is measured by the mean and standard deviation of the 2070–2099 values
(reported in the bottom right of each panel; see Supplementary Table S2 for regional boundaries).

and southeastern Eurasia beginning in the 2040–2069 period (Fig. 2
and Supplementary Figs S7 and S9). In addition to the general
pattern of increasingmodel agreement later in the RCP8.5 pathway,
we find generally greater model agreement at common levels of
warming (Supplementary Fig. S6) than at common levels of forcing

(Fig. 2), suggesting that some of the model differences within each
of the RCP8.5 periods (Figs 1 and 2) are due to differences in
global climate sensitivity.

Northeastern Eurasia and the high Arctic of North America
exhibit both a decreasing occurrence of low snow years (Fig. 2)
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Figure 2 | Emergence of low and extremely low snow years in the twenty-first century. Percentage of years with accumulated March SWE below the
simulated 1976–2005 median (top) or minimum (bottom) in three periods of RCP 8.5 (56 realizations from 26 models; Supplementary Table S1). Following
ref. 21, stippling indicates areas where the magnitude of the multi-model ensemble mean occurrence divided by the multi-model standard deviation of
occurrence exceeds 1.0 (black symbols) or 2.0 (white symbols). Grey denotes areas where at least half of the realizations have a median (top) or minimum
(bottom) March SWE of zero in the 1976–2005 period.

and an increasing occurrence of extremely high snow years
(Supplementary Fig. S5). The regional increases in high snow
years result from increasing precipitation (Fig. 3)21 in combination
with cold-season temperatures that remain below freezing despite
twenty-first-century warming22. The increasing precipitation is
consistent with the response of Arctic water vapour and cloud cover
to atmospheric warming21,22, the response of the Arctic boundary
layer inversion to decreasing Arctic sea ice22, and the response
of the dominant storm tracks to a decreased equator-to-pole
temperature gradient23.

The increasing occurrence of low snow years that is identified
over much of the Northern Hemisphere (Fig. 2) is associated
with substantial changes in the seasonal distribution of total
surface runoff (Fig. 3 and Supplementary Figs S10 and S11).
For example, the occurrence of years with winter runoff above
the simulated baseline winter maximum exceeds 20% in the
2040–2069 period (Supplementary Fig. S11) and 40% in the
2070–2099 period over large areas of North America and
Eurasia, with the ensemble mean occurrence exceeding the
ensemble standard deviation over most areas of peak occurrence
(Fig. 3). In addition, areas of extremely high winter runoff are
associated with extremely low spring runoff, including greater
than 30% of years below the spring baseline minimum over
large areas of western North America and northwestern Eurasia
in the 2070–2099 period (Fig. 3). Likewise, the occurrence of
extremely high spring runoff exceeds 20% in the 2040–2069 period
(Supplementary Fig. S11) and 30% in the 2070–2099 period over
the Greater Himalaya24 and high-latitude areas of North America

and northeastern Eurasia (Fig. 3). The extremely high spring
runoff over many of these areas is associated with extremely low
summer runoff, including greater than 20% of years below the
baseline summer minimum over areas of the Greater Himalaya and
northeastern Eurasia during the 2070–2099 period. The ensemble
mean occurrence of extremely low spring and summer runoff
exceeds the ensemble standard deviation primarily in areas of
peak occurrence (Fig. 3).

The changes in extreme seasonal total surface runoff seem to be
more closely associated with changes in extreme seasonal snowmelt
than changes in extreme seasonal precipitation, although extremely
high spring precipitation does seem to contribute to the occurrence
of extremely high spring total surface runoff over the Greater
Himalaya (Fig. 3). Similarly, the occurrence of extremely high
spring snowmelt and total surface runoff over northeastern Eurasia
in the 2070–2099 period (Fig. 3) is probably due to the occurrence
of extremely high March SWE (Supplementary Fig. S5), which is in
turn linked to the occurrence of extremely high winter precipitation
(Fig. 3). High levels of model agreement are more widespread for
extreme precipitation and snowmelt than for extreme total surface
runoff (Fig. 3). (Comparisons between precipitation, snowmelt and
total surface runoff should be treated with some caution as the
CMIP5 data set varies at present in ensemble size for these variables;
Supplementary Table S1.)

The model biases (Fig. 1) create a number of important caveats.
First, it is important to emphasize that the general circulation
models (GCMs) do not resolve the complex topography of the
snow-dominatedmountain regions. Indeed, thewesternUS, central
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Figure 3 | Emergence of extreme precipitation, melt and runoff years in the twenty-first century. Percentage of years in the 2070–2099 period of the
RCP8.5 simulations in which seasonal precipitation (69 realizations from 31 models; Supplementary Table S1), snowmelt runoff (34 realizations from 17
models) or total surface runoff (56 realizations from 27 models) falls below the simulated 1976–2005 seasonal minimum or above the simulated
1976–2005 seasonal maximum. Following ref. 21, stippling indicates areas where the magnitude of the multi-model ensemble mean occurrence divided by
the multi-model standard deviation of occurrence exceeds 1.0 (black symbols) or 2.0 (white symbols).

Asia and Greater Himalaya show the greatest variation in model
agreement with observations. All three of these regions are both
topographically complex (which increases model temperature and
precipitation biases through disagreement between the model
topography and the real topography) and located in the mid-
latitudes (which increases the likelihood that model biases place
the simulated cold-season temperature on the incorrect side
of the melt-freeze threshold). The western US and Greater
Himalaya both exhibit intra-regional heterogeneity in the sign
of trends in accumulated solid water over recent decades6,7,
raising particular caution about the ability of GCMs that do
not capture the regional topographic complexity to accurately
simulate the response of snow-related extremes. However, although
the limitations caused by low model resolution should not be
under-emphasized, it is notable that most CMIP5 GCMs exhibit
higher-than-observed mean and variability of March SWE over
the western US and Greater Himalaya during the baseline period
(Fig. 1), neither of which would be expected to bias those
models towards accelerated increases in extremely low snow
accumulation. In contrast, most CMIP5 GCMs exhibit lower-than-
observed mean and variability of March SWE over central Asia
(Fig. 1), suggesting that the simulated regional reductions in snow

accumulation could be artificially enhanced by the model biases.
Using bias-corrected and spatially downscaled temperature and
precipitation fields from the GCMs as inputs to a hydrologic model
would probably improve the agreement between simulated and
observed SWE (ref. 25).

Uncertainties associated with precipitation also create important
caveats. In particular, as long as temperatures remain sufficiently
cold to support solid water, changes in precipitation should
dominate the snow response to global warming. The occurrence
of extremely high winter precipitation increases over large areas
of the high latitudes of North America and Eurasia beginning
in the 2040–2069 period, with the ensemble mean exceeding the
ensemble standard deviation over most of those areas (Fig. 3
and Supplementary Fig. S11). However, only northeastern Eurasia
and areas of the high Arctic of central North America exhibit
an increasing occurrence of extremely high cold-season SWE
(Supplementary Fig. S5), suggesting that increases in cold-season
temperature overwhelm robust increases in extremely high winter
precipitation to prevent increases in extremely high snow years
over much of the high latitudes. Likewise, the western US—where
the temperature is, at present, much closer to the liquid/solid
threshold—exhibits increases in extremely low cold-season SWE
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(Supplementary Fig. S4), despite increases in extremely high winter
precipitation (Fig. 3 and Supplementary Fig. S11). The ensemble
mean occurrences of low snow years and high precipitation years
exceed the ensemble standard deviation over most areas of the
western US (Fig. 3 and Supplementary Figs S4 and S11), again
suggesting that increasing cold-season temperatures overwhelm
robust increases in the occurrence of extremely high cold-season
precipitation. However, unrealistically smooth model topography
over the western US could artificially accentuate the influence of
warming by artificially raising the simulated surface temperature
of high elevation areas, again highlighting the importance of
bias correction, spatial downscaling and hydrologic modelling25.
(Furthermore, when considering our measures of climate model
agreement, it is important to note that the different models are not
entirely independent26.)

These caveats notwithstanding, the emergence of frequent
snow-related hydrologic extremes could have important impacts,
particularly given present reservoir capacity and population
growth1. For example, the water systems of the western US are
heavily dependent on natural storage by mountain snowpack
during the cold season and gradual release by snowmelt during
the warm season3. An increasing occurrence of extremely low
snow years (Fig. 2) and a shift towards extremely high winter
runoff and extremely low spring runoff (Fig. 3) would increase
the need for both flood control and liquid storage capacity,
and decrease the availability of water for high-value agricultural
systems during the dry warm-season months (when irrigation
demand is highest). Early spring snowmelt has also been associated
with an increased occurrence of wildfires9, increased vulnerability
of riparian ecosystems12, enhanced pest pressure8 and species
extinctions27 in the western US, and similar impacts have been
identified in Europe2,11,13. Furthermore, >50% of the world’s
population lives downstream of the Greater Himalaya region1, with
snowmelt providing>40% of pre- and early-monsoon discharge in
the Greater Himalaya catchments, and >65% and >30% of annual
discharge in the Indus and Tsangpo/Brahmaputra catchments,
respectively24. An increasing occurrence of extremely low snow
years (Fig. 2) and a shift towards extremely high winter/spring
runoff and extremely low summer runoff (Fig. 3) would therefore
increase the flood risk during the winter/spring, and decrease the
availability of freshwater during the summer.

Given the potential impacts across the Northern Hemisphere,
our results highlight the likelihood of intensifying hydrologic stress
in snow-dependent regions, beginning in the near-term decades
when global warming is likely to remain within 2 ◦C of the
pre-industrial baseline18.

Methods
Models and analysis We analyse global climate model output from the
CMIP5 RCP8.5 experiment16 (Supplementary Table S1). We analyse changes
from the 1976 to 2005 baseline in the 2010–2039, 2040–2069 and 2070–2099
periods of RCP8.5, and as a function of global warming in each individual
realization. Following ref. 28, we first interpolate each model to a common
1◦ geographical grid.

We analyse the CMIP5 snw variable, which is defined as the surface snow
amount in units of kilograms per square metre. As 1 April SWE is a representative
metric of the net snow accumulated during the Northern Hemisphere winter snow
season7,19,20, we focus our analyses on March snw, which reflects the mean monthly
March SWE. (Our analyses yield similar SWE results for the other cold-season
months; Supplementary Figs S4 and S5.)

We compare the simulated SWE values with observational SWE values from
the National Snow and Ice Data Center’s global monthly EASE-grid SWE data29.
The observational snow data are derived from microwave soundings and provided
on a 25-km equal area grid. We compare the simulated and observational mean and
interannual variability for each model realization over nine Northern Hemisphere
regions30 (Fig. 1 and Supplementary Table S2). We first calculate the area-weighted
mean for March of each year in the 1979–2005 period of each model realization and
of the observational data set, and then calculate the regional mean and interannual
standard deviation of each time series. In addition, we compare the fractional

change in regional accumulated March SWE among the different models in the
three periods of RCP8.5.

We also analyse the occurrence of the simulated baseline median and
minimum accumulated March SWE at each grid point. We first calculate the
simulated median and minimum March values at each grid point during the
1976–2005 period of each realization. We then calculate the number of years with
March values less than the respective realization median and minimum baseline
values at each grid point during the 2010–2039, 2040–2069 and 2070–2099 periods
of each realization, and for the 30 years centred on 2 ◦C, 3 ◦C and 4 ◦C of global
warming above the pre-industrial baseline. We then calculate the mean of the
exceedances across the realizations in each period.

We also analyse the precipitation, snowmelt runoff and total surface runoff
during the Northern Hemisphere winter (December–January–February; DJF),
spring (March–April–May; MAM), and summer (June–July–August; JJA) seasons.
For each of the seasons, we calculate the maximum (minimum) simulated baseline
value at each grid point in each realization as the highest (lowest) seasonal value that
occurred during the 1976–2005 period. We then calculate the number of seasons
with simulated values greater (less) than the respective realization maximum
(minimum) baseline value at each grid point during the 2010–2039, 2040–2069
and 2070–2099 periods of each realization. We then calculate the mean of the
exceedances across the realizations.

Statistical robustness We calculate five measures of statistical robustness. To
quantify the signal-to-noise ratio between the CMIP5 realizations, we follow the
Intergovernmental Panel on Climate Change21 and calculate the ratio between
the mean of the model simulated values in the future period and the standard
deviation of the model simulated values in the future period, for all of the
available realizations (Supplementary Table S1; Measure 1). To test the influence
of non-uniform ensemble size on the ensemble signal-to-noise ratio, we repeat
Measure 1 using only one realization from each model (Supplementary Table
S1; Measure 2). To test the influence of intra-model variability on the ensemble
signal-to-noise ratio, we repeat Measure 1 using only the realizations from
the individual model that has the largest ensemble size (CSIRO-Mk3-6-0; 10
realizations; Supplementary Table S1; Measure 3).

To test whether the distribution of threshold exceedances in the future
period is statistically distinguishable from the distribution resulting from baseline
internal climate system variability, we calculate the ratio between the single-model
mean occurrence in the future period and the single-model standard deviation of
occurrence in the baseline period, using only the realizations from the individual
model that has the largest ensemble size (CSIRO-Mk3-6-0). We calculate the
single-model standard deviation in the baseline period by first calculating the
mean of the 1976–2005 threshold values in the CSIRO-Mk3-6-0 simulations, and
then calculating the standard deviation of the distribution of exceedances of that
mean threshold across the 10 baseline realizations. We calculate the threshold
occurrence in the future period of each CSIRO-Mk3-6-0 realization as in Measure
3 (using the respective historical threshold value from each CSIRO-Mk3-6-0
realization; Measure 4), and using the mean of the historical threshold values from
the CSIRO-Mk3-6-0 realizations (Measure 5).

For all five measures, we first subtract the fractional occurrence in the baseline
period from the fractional occurrence in the future period. By definition, for the
baseline period, the fractional occurrence of years below the baseline median is 0.5,
whereas the fractional occurrence of years below the baseline minimum (above the
baseline maximum) is 0.0.
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