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Abstract With rivers in critical regions already exploited to capacity throughout the world and ground-
water overdraft as well as large-scale contamination occurring in many areas, we have entered an era in
which multiple simultaneous stresses will drive water management. Increasingly, groundwater resources
are taking a more prominent role in providing freshwater supplies. We discuss the competing fresh ground-
water needs for human consumption, food production, energy, and the environment, as well as physical
hazards, and conflicts due to transboundary overexploitation. During the past 50 years, groundwater man-
agement modeling has focused on combining simulation with optimization methods to inspect important
problems ranging from contaminant remediation to agricultural irrigation management. The compound
challenges now faced by water planners require a new generation of aquifer management models that
address the broad impacts of global change on aquifer storage and depletion trajectory management, land
subsidence, groundwater-dependent ecosystems, seawater intrusion, anthropogenic and geogenic contam-
ination, supply vulnerability, and long-term sustainability. The scope of research efforts is only beginning to
address complex interactions using multiagent system models that are not readily formulated as optimiza-
tion problems and that consider a suite of human behavioral responses.

1. Introduction

Groundwater represents the largest stock of accessible freshwater and accounts for about one-third of
freshwater withdrawals globally [Siebert et al., 2010; Famiglietti, 2014]. In 2010 in the U.S., groundwater pro-
vided 37% of the total public water supply and 98% of self-supplied freshwater [Maupin et al., 2014; also see
Alley et al., 2002]. In the European Union as a whole, groundwater supplies 70% of domestic use. In India,
the rate of groundwater abstraction has increased tenfold in the past 50 years, making it the nation with
the greatest total groundwater production in 2010, with twice the annual abstraction of either the U.S. or
China [Margat and van der Gun, 2013]. Mining of nonrenewable aquifers is currently critical in places like Jor-
dan, where the majority of municipal water is supplied by groundwater.

Large aquifers that are negligibly recharged are being mined around the world. The Nubian aquifer extend-
ing into parts of Egypt, Chad, Libya, and Sudan, has experienced 60 m of drawdown in Egypt with a cone of
depression entering into Sudan [Puri and Aureli, 2009; Gleeson et al., 2010]. Minimally recharged parts of the
High Plains aquifer in Kansas and Texas have been mined since the 1940s and water levels have declined
up to 50 m [Konikow, 2013]. Although essential to regional irrigated agricultural economies, continuing
groundwater overexploitation in such regions is unsustainable over multiple generations. On one hand, the
volumes of some aquifer systems are enormous. For example, the Nubian sandstone system in Libya con-
tains an estimated 4850 km3, while extraction was 0.9 km3/yr in 2000, suggesting up to several hundreds or
perhaps thousands of years of supply [Margat and van der Gun, 2013]. On the other hand, mining ground-
water is analogous to mining a mineral resource. With increased extraction, the ‘‘grade’’ or relative richness
of the resource declines. In the case of groundwater, as hydraulic heads drop, well depths and pumping lifts
increase with a consequent rise in production costs, and in some cases water quality can diminish as less
desirable deep groundwater is produced.

Groundwater exploitation and contamination have become global problems [Gregory et al., 2013; Zheng
and Liu, 2013]. We are now experiencing distinct regional ‘‘tragedy of the commons’’ [Hardin, 1968] at a
global scale in which individual aquifer users act to maximize their own benefits, but the shared aquifer
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resource suffers aggregate impacts with consequent costs to humans and the environment. Solutions to
this dilemma include privatization, top down governmental regulations, and nonmarket bottom up
resource sharing by communities that benefit from collective use via cooperation [Ostrom, 1990]. However,
whether solutions are achieved by private mechanisms or public mandates, constructing strategies to
achieve equitable groundwater allocation requires quantitative tools for planning and policy evaluation
that integrate modern simulation methods with a new generation of management tools based on physical,
institutional, environmental, and economic metrics that reflect decision-making objectives and processes.

Interestingly, the lead paper in the first issue of Water Resources Research addressed the treatment of social
costs and benefits in evaluation of policy decisions for water investments [Arrow, 1965]. Quantifying eco-
nomic impacts remains a relevant and evolving area of research as social welfare and ecosystem services
are now being recognized as critical elements of water resource allocation decisions. Efforts to quantify
human and environmental well-being are being taken into account when making investments in water
infrastructure and natural capital, particularly when groundwater, a common pool and transboundary
resource, is concerned [Brauman et al., 2007; Guswa et al., 2014].

Here we discuss recent advances and needs in groundwater management analytic tool development aimed
at identifying aquifer exploitation and protection strategies that satisfy logistical, economic, environmental,
and regulatory constraints. Such models can be used to quantitatively evaluate the impacts of proposed
policy instruments such as taxes, quotas, and water rights structures, and management mechanisms such
as water markets or reallocation strategies. Works that discuss the categories and techniques for coupling
simulation with optimization methods used to guide aquifer management may be found in Gorelick [1983,
1990], Yeh [1992], Wagner [1995a], Ahlfeld and Mulligan [2000], Mayer et al. [2002], Orr and Meystel [2005],
Nicklow et al. [2010], Peralta [2012], Reed et al. [2013], and Singh [2012, 2014a].

The endeavors of the hydrologic science community have broadened to improve our understanding and
quantify physical and chemical processes involving groundwater. Research has also expanded its reach to
develop management and policy evaluation tools incorporating modern simulation approaches combined
with a multitude of optimization, heuristic, and multiagent system simulation methods. Indeed, hydrologic-
economic models have been developed that represent water systems coupled with human behavior.
Understanding the intricate interplay between hydrologic response and human activities is essential if
groundwater resources are to be produced sustainably, or otherwise managed to reduce short-term vulner-
ability. Although aquifer simulation-management tools exist and are steadily being enhanced to handle
more complex dynamics, the hydrologic science and water management communities are not keeping
pace with what is necessary to halt and resolve systemic long-term effects of depletion and degradation of
groundwater resources. Resolving these problems often requires institutional and regulatory changes that
can be guided, in part, by assessments based on integrated hydrologic-economic models.

2. Evolution of Simulation-Optimization Approaches

Mathematical programming techniques are among the earliest and most commonly used for optimal
groundwater management. In common, they share formulations involving a goal that attempts to minimize
or maximize a single-objective or multiobjective function, subject to a series of constraints on variables
describing the state of the system, such as hydraulic heads or concentrations, as well as limits on depend-
ent and decision variables, such as pumping and recharge rates. Methods include (1) linear programming
(LP) and quadratic programming (QP) [e.g., Aguado and Remson, 1974; Maddock, 1972a]; (2) nonlinear pro-
gramming (NLP) [e.g., Gorelick et al., 1984; Ahlfeld et al., 1988a, 1988b]; (3) mixed integer linear and quadratic
programming (MILP/MIQP) [e.g., Maddock, 1972b; Rosenwald and Green, 1974; Willis, 1976, 1979]; (4) mixed
integer nonlinear programming (MINLP) [e.g., McKinney and Lin, 1995]; (5) differential dynamic program-
ming (DDP) [e.g., Jones et al., 1987; Andricevic and Kitanidis, 1990; Chang et al., 1992; Culver and Shoemaker,
1992; Sun and Zheng, 1999; Hsiao and Chang, 2002]; and (6) stochastic nonlinear programming (SNLP) [Wag-
ner and Gorelick, 1987, 1989; Chan, 1993]. LP is applicable only when the aquifer simulation model and
objective function are both linear. When neither of them can be treated as linear, QP, or full NLP must be
applied. In optimization problems where discrete decision variables such as well locations and fixed capital
costs are involved, MILP, MIQP, or MINLP is used. DDP is particularly efficient for optimization problems with
a large number of management periods. SNLP is able to overdesign pumping and injection systems to
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account for uncertainty in state variables, such as solute concentrations, and in spatially variable physical
model parameters, such as hydraulic conductivity.

Linear programming is computationally efficient and has been implemented in a number of practical
simulation-optimization codes such as MODMAN [Greenwald, 1998], MODOFC [Ahlfeld and Riefler, 1999],
and the Management Process for MODFLOW [Ahlfeld et al., 2005], all of which involve hydraulic head, draw-
down, and flow-related constraints. The major limitation of linear programming is that the method is techni-
cally restricted to confined aquifers, or more generally to systems in which saturated aquifer thickness does
not depend on hydraulic head. In addition, linear programming generally cannot deal effectively with solute
concentration management. Nonlinear programming and dynamic programming have much wider applic-
ability. However, it is necessary in these methods to evaluate the derivatives (gradients) of the objective
function and constraints (Jacobian, sensitivity coefficients) with respect to the decision variables (and also
the state variables for DDP); this is the reason that these approaches are often referred to as ‘‘gradient-
based’’ methods. The gradient can be computed analytically or numerically using finite differences.

Although gradient-based methods can be advantageous in terms of computational ease, they have some
significant limitations as well. First, if the objective function and/or constraints are highly complex and non-
linear, there may exist multiple local optimal solutions. As a result, gradient-based methods may be trapped
in a local optimum when a single starting solution is provided, thus failing to identify the globally optimal
solution. Second, gradient calculation is a major source of numerical expense and difficulty, and conver-
gence may be slow as a result.

Since the 1990s, a class of optimization methods based on heuristic search techniques have been devel-
oped and applied to groundwater management problems, including simulated annealing, genetic algo-
rithms, tabu search, artificial neural networks, and outer approximation. These optimization techniques
have been collectively referred to as global or evolutionary optimization methods. They are able to identify
the global or near-global optimum. They have also been called ‘‘gradient-free’’ heuristic search methods
because they do not require calculation of a gradient. Some of these methods mimic certain natural sys-
tems, such as biological evolution in the case of genetic algorithms, to identify the optimal solution instead
of being guided by gradients of the objective function. Even so, some elements of gradient-based search
can be incorporated into a global optimization framework. General references on global optimization meth-
ods include Goldberg [1989], Sen and Stoffa [2013], and Glover and Laguna [1997].

Global optimization methods generally require intensive computational effort. However, in spite of this,
they have been widely used to solve groundwater management problems because of their ability to iden-
tify the global optimum, their efficiency in handling discrete decision variables such as well locations, and
the ease and generality with which they can be linked with flow and transport simulation models. Earlier
examples of the application of simulated annealing to remediation design optimization problems include
Dougherty and Marryott [1991], Rizzo and Dougherty [1996], and Wang and Zheng [1998]. Examples of the
application of genetic algorithms include Wang [1991], McKinney and Lin [1994], Wagner [1995b], Huang
and Mayer [1997], Wang and Zheng [1997], Aksoy and Culver [2000], Reed et al. [2000], and Smalley et al.
[2000]. Examples of the application of artificial neural networks include Ranjithan et al. [1993], Rogers and
Dowla [1994], and Aly and Peralta [1999]. The first applications of outer approximation and tabu search to
groundwater problems are presented by Karatzas and Pinder [1993] and Zheng and Wang [1996]. Recent
reviews of global and evolutionary algorithms for both single-objective and multiobjective optimization for
groundwater management can be found in Nicklow et al. [2010], Peralta [2012], and Reed et al. [2013].

3. Six Dimensions of Groundwater Vulnerability

Global change continues to adversely affect groundwater resources [e.g., Aeschbach-Hertig and Gleeson,
2012; Kløve et al., 2013]. The cumulative impacts of increasing population, urbanization, increased water use
with prosperity, land-use change, inexpensive drilling and pumping technology, industrialization, expansion
of irrigated agriculture, institutional changes, stricter water quality standards, and perhaps the early influ-
ence of climate variability, have led to widespread, often unmanaged, use of groundwater throughout the
world. Even in the U.S., self-supplied groundwater use is rarely metered [Maupin et al., 2014]. Aquifers are
the ultimate long-term reservoirs that both store and transmit freshwater. Aquifers are largely free of evapo-
ration, regionally ubiquitous, and are generally free of pathogens under natural conditions. For these and
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other reasons, aquifers serve as a valua-
ble human and environmental resource,
and it is unfortunate that groundwater
overexploitation and contamination
problems have become so widespread.

We inspect six dimensions of vulnerabil-
ity spanning the connected human-
environmental system. Figure 1 shows
these six major dimensions, which reflect
key interactions between groundwater
resources and humans as well as the nat-
ural environment. Some works that con-
sider complex problems involving, for
example, environmental impacts, human
health risk, and agricultural profits, fall
into more than one category. In the fol-
lowing subsections, we discuss each
dimension as it relates to historical driv-

ers, citing selected recent research developments and key applications. We also suggest research needs for
improved aquifer management.

3.1. Ecosystems
With over 47,000 dams in the world of which over 22,000 are large dams [Gleick, 2014], most of the world’s large
river systems are greatly affected by human use. As of 2005, over half of the world’s large river systems suffered

from the impacts of dams, even
though surface reservoirs have
provided notable benefits to
humans and protected ecosys-
tems from invasive aquatic spe-
cies [Nilsson et al., 2005]. Given
the extent of managed surface
waters around the world,
groundwater exploitation has
increased and the influence of
groundwater use on rivers has
been pronounced. Pumping
from aquifers has affected
groundwater-dependent ecosys-
tems (Figure 2), disturbing the
balance between human and
environmental needs [Margat
and van der Gun, 2013].

A modern example implemen-
tation of a simulation-
optimization approach to miti-
gating ecological damage is in
southwest Florida. As a conse-
quence of excessive ground-
water pumping during the
1970s and 1980s, groundwater
withdrawals are regulated by
the Southwest Florida Water
Management District, which
proposed specific minimum

Figure 1. Dimensions of human and environmental vulnerability stemming
from the exploitation and contamination of groundwater resources.

Figure 2. Impacts of pumping on groundwater-dependent ecosystems.
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water levels in 1998 to protect lakes and palustrine (inland) wetlands by maintaining water levels at key
aquifer compliance points. To provide the community’s needs for groundwater, yet respect the constraint
of maintaining the integrity of lakes and wetlands, the regional purveyor of water, Tampa Bay Water, which
is Florida’s largest wholesale water supplier, providing water to over 2.3 million people, runs an innovative,
sophisticated, coupled aquifer simulation-optimization model known as OROP (Optimized Regional Opera-
tions Plan). Using simulation combined with LP, OROP determines a pumping rotation schedule on a weekly
basis among 11 different regional well fields in conjunction with allocation of surface water and desalina-
tion plant water through a regional pipe network [Wanakule and Adams, 2014]. By regionally rotating pump-
ing, wetland water levels have time to recover and the necessary temporal, typically seasonal, pattern of
water levels (hydroperiod) is maintained. Tampa Bay Water’s approach is a model system for satisfying
water supply needs in the face of ecohydrologic constraints. Tampa Bay Water is constantly improving
OROP and is actively considering sources of uncertainty that affect water security.

Motivated by the Tampa Bay Water system, Feyen and Gorelick [2004] developed a stochastic simulation-
optimization model, SNLP, that maximized pumping while protecting wetland water levels that considered
uncertainty due to heterogeneity in hydraulic conductivity. A Bayesian framework based on a similar system
employed a simulation-optimization approach that determined tradeoffs between the worth of collecting
additional hydraulic conductivity data and maximizing profits to a water purveyor while protecting ecologi-
cally sensitive wetlands [Feyen and Gorelick, 2005].

Perhaps the greatest misconception in groundwater management, which has a significant impact on the envi-
ronment, is that the predevelopment magnitude of aquifer recharge is assumed to be equivalent to the sus-
tainable rate at which an aquifer can be exploited. This misconception has been referred to as the ‘‘water
budget myth’’ [Bredehoeft et al., 1982; Bredehoeft, 2002]. The consequent miscalculation is that ‘‘sustainability
equals pre-development natural recharge,’’ which ignores the fact that, prior to pumping, this virgin recharge
was already discharging to rivers as base flow, to lakes, estuaries, and the ocean as bottom discharge, and to
naturally occurring springs. To claim this quantity of groundwater recharge for human use via pumping can
amount to double counting the available water that can be extracted safely for human activities on a long-
term basis. Pumping can impact surface waters by reducing groundwater discharge to rivers as base flow or
reversing flow directions thereby capturing surface waters. When pumping is initiated, water is primarily
derived from changes in aquifer storage, and as pumping continues more and more water can come from
boundaries [Alley et al., 1999]. The lag time between the initiation of pumping and the reduction in base flow
or reversal of flow from surface waters can take many decades and achievement of a new equilibrium condi-
tion can take centuries [Bredehoeft and Durbin, 2009; Bredehoeft and Alley, 2014]. This lag time depends on the
distance between pumping and (virgin) discharge points, the magnitude of pumping, aquifer geometry, as
well as hydraulic properties, and other hydrologic factors. The consequence of ignoring the ultimate source of
pumped water can be harm to groundwater-dependent ecosystems and to downstream water users.

A related source of confusion in groundwater management is the notion of safe yield. This often has been
equated with either the entirety of natural aquifer recharge or a significant fixed proportion of it. Such false
equivalence results in similar partial or complete ‘‘double counting’’ as noted in the above discussion of the
‘‘water budget myth.’’ Fortunately, there is a valid concept of safe yield, but its definition depends on the
particular system under consideration. In essence, safe yield is simply the magnitude of sustained pumping
that could occur before something bad happens or ‘‘without getting into trouble’’ [Lohman, 1988]. Indeed,
Todd [1958] stated, ‘‘The safe yield of a groundwater basin is the amount of water that can be withdrawn
from it annually without producing an undesirable effect.’’ Such negative consequences include excessive
drawdown, promotion of land subsidence, unwanted alteration of hydraulic gradients or groundwater
velocities, entrainment of seawater or contaminated water, or even social impacts such as promoting con-
flicts over competition for water.

Simulation-optimization studies have been conducted to explore alternatives for more sustainable or at least
less vulnerable groundwater use, or safe yield as defined above. For example, Yang et al. [2001] presented a
multiobjective optimization model based on the response matrix method and multistage linear programming
to optimize management plans for groundwater resources in the semiarid River Shiyang Catchment in China.
The optimization model was able to satisfy the environmental and economic objectives, but did not identify a
final solution to reduce the overall water shortage within the catchment. McPhee and Yeh [2004] discussed a
multiobjective optimization problem in which environmental objectives are explicitly considered by
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minimizing the magnitude and
extent of drawdown within a speci-
fied region. The trade-offs among
three competing objectives are
derived and concepts based on fuzzy
set theory are used to rank and
select the alternative solutions.

3.2. Hazards
Scientific and engineering contribu-
tions to quantitative hydrogeology
have grown steadily, largely in
response to recognition of environ-
mental hazards. There are a variety
of hazards associated with overex-
ploitation of aquifers (Figure 3):
groundwater mining, land subsi-
dence, triggered earthquakes, and
seawater intrusion. Groundwater
mining has resulted in aquifer
depletion [Harou and Lund, 2008;
Gleeson et al., 2012] on such a scale
that its regional effects can be seen
from space using gravitational
anomaly [Famiglietti, 2014]. Major
aquifers throughout the world are
being exploited at extraordinary
rates with the net global ground-
water depletion rate doubling since
1990 [Konikow, 2011]. Regional
hydraulic heads have declined 10s
to well over 100 m (e.g., Houston,
Texas 120 m, North China Plain
120 m, south-central Arizona 150 m,
Chicago area 270 m, Sana’a basin,
Yemen 70 m, Bin Gahir, Libya 80 m,
Sierra de Cevillente, Spain 220 m)
[Cao et al., 2013a; Konikow, 2013;
Margat and van der Gun, 2013] with
consequent aquifer depletion,
excessive costs of pumping, and
entrainment of deep saline water.
Detailed calculations by Konikow
[2011] suggest that dewatering of
aquifers throughout the world has
resulted in discharge to the oceans
that accounts for about 13% of the

observed rate of sea-level rise. Liu et al. [2008] applied a genetic algorithm to determine the maximum ‘‘sus-
tainable pumping’’ that satisfies a series of prescribed constraints, including the maximum drawdown in the
shallow water table aquifer in the North China Plain, which has been plagued by one of the most severe
groundwater overdraft problems in the world [Zheng et al., 2010]. The genetic algorithm was also used to
minimize the economic costs associated with groundwater pumping and different management scenarios.

In contrast, an opposite problem to excessive water table decline due to overexploitation of aquifers is a ris-
ing water table, resulting in excessive evapotranspiration, soil salinization, and flooding of subsurface

Figure 3. Hazards due to groundwater pumping and extraction include land subsi-
dence (top), earthquake generation from wastewater injection (middle), and saltwater
intrusion (bottom).

Water Resources Research 10.1002/2014WR016825

GORELICK AND ZHENG GROUNDWATER MANAGEMENT CHALLENGE 3036



structures. The simulation-optimization approach provides a valuable tool to manage engineering problems
caused by shallow water tables. Barlow et al. [1996] identified optimal groundwater pumping strategies for
controlling the shallow water table in the San Joaquin Valley, California in an attempt to sustain continued
agricultural productivity. They demonstrated that the use of the combined simulation-optimization model
resulted in a 20 percent reduction in the area that was subject to a shallow water table over that identified
from simulation alone. Bayer et al. [2009] applied evolution strategies to control water table rises in the
Emscher and Rhine Basin of Northwestern Germany that threatened local infrastructure and basements of
buildings. They showed that through simulation-optimization modeling the existing well locations and
pumping rates can be redesigned to meet the drawdown targets with substantial reduction, up to 25% in
one scenario, in total extraction.

Groundwater pumping was known to cause land subsidence [Poland and Davis, 1969] and theory was in
place by the middle of the 1900s [Biot, 1941; Terzaghi, 1943;]. But it was in the past 50 years that high profile
causal links were dramatically demonstrated between over pumping and the hazard of land subsidence.
Documentation of the subsidence of Venice, Italy [Gambolati and Freeze, 1979] served as a wake-up call and
presented a quantitative simulation analysis of how coupled hydraulic and hydromechanical behavior can
have dire consequences. Land subsidence has been documented in regions including Santa Clara Valley,
California, Las Vegas, Nevada, Bankok, Thailand, the Mekong Delta, and the Yangtze Delta [Cao et al.,
2013b]. Predictive models exist and are being used, as demonstrated by Teatini et al. [2006] who forecast a
10 year trend in land subsidence in the Emilia-Romagna coastland south of the Po River delta, Italy. Larson
et al. [2001] were among the first to formulate an LP optimization model to determine maximum ground-
water withdrawal from nine pumping sub-basins without causing irrecoverable subsidence during the fore-
cast period. Formulation of an optimization problem involving land subsidence constraints was presented
by Chu and Chang [2010] with earlier work that considered uncertainty by Chang et al. [2007].

A related geomechanical hazard involves waste water injection associated with petroleum production and
consequent triggered or induced earthquakes [McGarr, 2014; Yeck et al., 2015]. In 2014, Oklahoma was host
to more earthquakes than California [Hand, 2014]. Oklahoma had 190 earthquakes magnitude 3 or greater,
or over 2.5 times the number in California. Evidence suggests that high volume wastewater injection wells
were associated with 2547 small earthquakes near Jones, Oklahoma [Keranen et al., 2014]. Injection was also
previously linked to a 5.7 magnitude 2011 earthquake in Prague, Oklahoma. Management of this hazard is
ripe for a regulatory framework based on simulation-optimization. The collection of petroleum producers
could have essentially a cap and trade system for pore-pressure increases in which simulation would be
used to determine the likely pore pressure response, and geomechanical modeling is used to estimate the
probability of induced earthquakes. The local and regional pore pressure could be managed to maximize
fluid injection while minimizing injection-induced earthquakes.

A third hazard that has received a lot of attention for which simulation-optimization models have been
developed relates to coastal seawater intrusion caused by groundwater pumping. Seawater intrusion has
proven to be a significant threat to freshwater supplies around the world [Werner et al., 2013]. Contributions
have explored a variety of methods for single-objective and multiobjective problems, and applied a variety
of gradient and nongradient-based optimization methods that seek to control coastal drawdowns, hydraulic
gradients, or salinity, with or without consideration of parameter uncertainty [Willis and Finney, 1988; Cheng
et al., 2000; Mantoglou et al., 2004; Park and Aral, 2004; Abarca et al., 2006; Bray and Yeh, 2008; Dhar and
Datta, 2009; Haddad and Marino, 2011; Kourakos and Mantoglou, 2013; Al-Juaidi et al., 2014; Singh, 2014b;
Sreekanth and Datta, 2014; Ataie-Ashtiani et al., 2013].

3.3. Human Health
The threat of groundwater contamination came to light during the past 50 years. With nuclear energy pro-
duced since the 1950s in the U. S., storing spend fuel became a concern that resulted in a 1970 National Acad-
emy study [National Academy of Sciences, 1970] recommending permanent storage of high-level nuclear
waste. At about the same time, groundwater contamination at Love Canal in New York state in the 1970s
marked the beginning of an era in which the human health consequences of groundwater contamination
were recognized. The Superfund program [Comprehensive Environmental Response, Compensation, and Liability
Act, 1980] resulted in a focus on predictive and management technology research with the development of
the field of contaminant hydrogeology and a major emphasis on aquifer remediation (Figure 4).
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Given the clear need to better
design groundwater remediation
systems, much work was done on
simulation-optimization for con-
taminant capture and contain-
ment. Although hydraulic gradient
control approaches using linear
response matrices with linear or
quadratic objective functions were
in place by the mid-1980s [Atwood
and Gorelick, 1985; Lefkoff and Gor-
elick, 1986; also see Gorelick et al.,
1993], it was recognized that treat-
ing concentrations as constrained
variables in optimized remediation
schemes required solute transport

simulations combined with nonlinear programming, NLP [Gorelick et al., 1984; Ahlfeld et al., 1988a, 1988b].
Optimization methods then addressed model uncertainty using chance constraints and the multiple realiza-
tion approach as well as optimal tradeoff between data collection and remediation costs [Wagner and Gorelick,
1987, 1989; Tucciarelli and Pinder, 1991; Wagner et al., 1992; Chan, 1993] with applications to field problems in
the U.S. and Canada [Tiedeman and Gorelick, 1993; Gailey and Gorelick, 1993].

In recognition of the highly complex and nonlinear nature of the objective functions and constraints in
groundwater quality optimization problems, including both remedial and monitoring system design, a con-
certed effort has been made over the last two decades to develop and improve global optimization algo-
rithms that are derivative-free and rely on heuristic and evolutionary search capable of identifying the
global optimum. Some recent applications of these global optimization algorithms can be found in these
studies [Erickson et al., 2002; Zheng and Wang, 2002; Becker et al., 2006; Kollat and Reed, 2007; Shoemaker
et al., 2007; Nicklow et al., 2010; Peralta, 2012; Reed et al., 2013; Yang et al., 2013a].

Minciardi et al. [2007] presented an integrated approach to the sustainable planning and control of ground-
water resources including groundwater quality. Physical and chemical models of the groundwater flow sys-
tem are embedded as constraints in the optimization problem, which considers both control and planning
decision variables. The resulting optimization problem is solved using nonlinear programming. Bauser et al.
[2010] presented an optimal real-time control approach for the management of drinking water well fields. A
numerical model is first used to represent the groundwater flow field. An ensemble Kalman Filter (EnKF) is
then used to improve the model prediction by assimilating newly measured water level data and reducing
the discrepancy between measured and simulated water levels. Next a multilevel optimal control method is
formulated and solved to manage the water levels at artificial recharge locations to prevent potential con-
taminants from reaching the drinking-water wells. Human health risk was accounted for in a goal-
programming simulation-optimization model of aquifer remediation [Li et al., 2014]. Hydraulic barrier opti-
mization was incorporated into a chance-constraint formulation that employed a Bayesian model to explore
geologic uncertainty in remediation design [Chitsazan et al., 2014].

Although much of the industrialized world has concentrated on anthropogenic sources of groundwater
contamination, geogenic (naturally occurring) contamination by metals such as arsenic and chromium pro-
vide a pronounced risk to human health. Arsenic contamination is pervasive in southern and southeast Asia
where over a hundred million people have been exposed [Harvey et al., 2002; Fendorf et al., 2010]. There is a
great need to manage groundwater resources that are subject to such geogenic sources of contamination.
For example, there is a need to determine optimal pumping rates and well-screen placement to avoid con-
taminant capture by municipal supply wells, and to combine real-time mixing control systems to dilute
moderately contaminated water prior to delivery to the public [Michael and Voss, 2008; Erban et al., 2013].

3.4. Food Security
Globally, just over 70% of all groundwater is used for irrigation [Margat and van der Gun, 2013], and about
half of the world’s irrigated crops rely on groundwater [Famiglietti, 2014]. In terms of land area, of the 301

Figure 4. Protection from groundwater contamination using optimized pump and treat
aquifer remediation.
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million ha equipped for irrigation glob-
ally, 38% depend on groundwater [Sie-
bert et al., 2010]. Generally, farmers
have been fairly efficient in their use of
groundwater in terms of supply, but
this has not followed when it comes to
managing contamination [Bredehoeft
et al., 1994]. It is not surprising that the
field of simulation-optimization model-
ing (Figure 5) has its roots in agricultural
water management with pioneering
works by Bredehoeft and Young [1970]
and Young and Bredehoeft [1972].

A limited amount of research has con-
tinued in management of groundwater
allocation for optimal crop production,
likely because the coupled hydrologic-
agricultural economic models involved
detailed and complex field applica-
tions. A coupled NLP conjunctive-use
simulation-optimization model of an
agricultural system, with explicit agro-
nomic functions that considered water
and salinity, was constructed to
explore a water rental market among
water-rich and water-poor farmers in
the Arkansas River valley, Colorado
[Lefkoff and Gorelick, 1990]. Peralta
et al. [1994] developed an NLP for irri-
gation of corn in which pesticide leach-
ing was constrained such that the
reduction in crop production was mini-
mized. Schoups et al. [2006] developed
a conjunctive-use profit maximization
model for the Yaqui Valley, Mexico,
which produced 40% of the country’s
wheat until a major drought hit. The
model identified the optimal cropping,
reservoir release, and groundwater

management policy. Maneta et al. [2009] developed a complex agricultural hydroeconomic model that
maximized annual farming benefits subject to hydrologic relations developed by running a high-
resolution coupled surface water—3-D saturated/unsaturated flow model. The integrated model incorpo-
rated production functions for crops that were rain fed or irrigated and was applied to the Sao Francisco
River Basin in Brazil. Results quantified agricultural output under both mild and severe hypothetical
drought conditions. Khan [2010] developed a combined 2-D-saturated flow and unsaturated flow model
within the context of an NLP hydrologic-economic analysis of optimal paddy production in the southeast-
ern Murray-Darling basin in Australia. Gosh and Kashyap [2012] used an ANN model for a groundwater
system in India for optimal agricultural production. Raul and Panda [2013] presented a linear simulation-
optimization of conjunctive use to identify the optimal pumpage and cropping at different levels of prob-
ability of exceedance of canal water availability and rainfall. Uncertainty in hydraulic conductivity was
considered by Pena-Haro et al. [2011] in which four different stochastic hydroeconomic models were
compared for optimal management of groundwater. Constraints were placed on nitrogen fertilizer appli-
cation and the solution maximized the net benefits of agriculture, identifying least-cost fertilizer plans
while meeting groundwater quality standards.

Figure 5. Agricultural-hydroeconomic components as part of a groundwater
optimization model.
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3.5. Groundwater for Energy and
Resources
In the U.S., groundwater extraction
accounted for less than 1% of with-
drawals for thermoelectric power
[Maupin et al., 2014]. However, locally,
groundwater and energy are intri-
cately intertwined as the exploitation,
delivery, and treatment of water
requires energy, while almost all sour-
ces of energy require water for some
aspects of production including
extraction, cooling, or conveyance.
This linkage, commonly referred to as
the ‘‘water-energy nexus,’’ has become
a major focus in the hydrologic scien-
ces [National Research Council, 2012;
Bartos and Chester, 2014].

Groundwater management in the con-
text of the water-energy nexus has
taken on greater importance as shale
oil and gas production has become a
prominent feature in the United
States’ energy portfolio. Hydrofracking
is the key technology that enables
shale oil and gas production (Figure
6). Hydrofracking can require a signifi-
cant amount of water, although this
water need not be potable. It has
been suggested that brackish injec-
tion water may be used more com-
monly in the future to avoid
competition for freshwater [Nicot and
Scanlon, 2012]. Installing and hydro-
fracturing a single well can take 7500–
80,000 m3 of water [Meldrum et al.,
2013; Vengosh et al., 2014], with more

water used recently per well as horizontal wells have extended over longer distances. In context, overall
water use for shale-gas production is relatively small, e.g., in Texas <1% of total water use [Nicot and Scan-
lon, 2012]. Scanlon et al. [2014] state that hydrofracking does not, in general, use more water per unit of oil
production than does conventional oil production. However, Vengosh et al. [2014] note that there are four
potential risks to water resources of shale gas production: (1) contamination of shallow aquifers from stray
gas and salinization of shallow groundwater through leaking natural gas wells, (2) the contamination of sur-
face water and shallow groundwater from various sources of shale gas wastewater; (3) buildup of toxic and
radioactive elements in soil or stream sediments; and (4) the overextraction of water resources promoting
water shortages and conflicts. To date, there is no integrated simulation-optimization model formulation
that accounts for all of these potential impacts.

In addition to shale oil and gas production, the increased use in the U.S. of biofuels, often considered
‘‘green’’ energy sources, also requires a significant amount of water for production (Figure 6). About 40% of
U.S. corn is irrigated to produce ethanol [Foley, 2013], which has resulted in stress on regional aquifers. This
is a significant concern for the Ogallala aquifer where corn irrigation is prominent, further depleting a
stressed system. In addition, increasing demands for energy lead to increasing demands for water, and the
lack of water resources can hamper energy production. It is imperative to manage water and energy

Figure 6. Vulnerability associated with simultaneous use of groundwater and
petroleum recovery (top) and water use associated with biofuel/ethanol produc-
tion (bottom).
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resources jointly, considering water use during the entire life cycle of energy production. This problem is
ripe for integrated hydrologic-economic model analysis.

Groundwater management plays an important role in water-energy nexus studies, although it is still rare to
see application of the simulation-optimization framework in these types of studies. Karimi et al. [2012] pre-
sented a case study from Iran to explore how enhanced farm water management can help in reducing
groundwater exploitation and subsequently limiting energy consumption and the carbon footprint of the
groundwater economy. Wang et al. [2012] analyzed the electricity use of groundwater pumping for agricul-
ture in 11 provinces of China and derived estimates of greenhouse gas emissions from groundwater pump-
ing. They concluded that as China is moving aggressively to reduce water use to combat water scarcity,
significant potential exists to promote the cobenefits of water and energy savings. Finally, a valuable sum-
mary along with analytic solutions for the important problem of minimizing energy costs for pumping by
minimizing lift appears in Ahlfeld and Laverty [2011].

3.6. Conflict
There are many types of conflicts that arise from water use by multiple parties. Perhaps the greatest need
for regional groundwater management is to help resolve transboundary groundwater conflicts. The scale of
transboundary problems can be intraregional, interstate, or international. The underlying physical problem
is similar in each case—groundwater exploitation in the portion of an aquifer on one side of a political or
property boundary affects hydraulic heads and consequent pumping costs throughout the connected
domain, and pumping can draw clean or contaminated water across such a boundary. International trans-
boundary groundwater issues have received significant attention and are highlighted in several excellent
papers [Bloomquist and Ingram, 2003; Jarvis et al., 2005; Chermak et al., 2005; Fernandez, 2006; Darnault,
2008]. A superb review of transboundary aquifers (Figure 7) including hydrogeologic, economic, legal, insti-
tutional, and environmental issues is presented by Puri [2001], and a comprehensive atlas of international
transboundary aquifers was produced by Puri and Aureli [2009; also see 2012 map].

There have been only a few applications of coupled simulation-optimization models to this problem. An
approach has been effectively developed for the Sahara aquifer shared by Algeria, Libya, and Tunisia sug-
gesting extraction scheduling that is communally beneficial [Siegfried and Kinzelbach, 2006]. Such
approaches could benefit countries that also share major aquifers such as Saudi Arabia and Jordan, which
each mine the fossil Disi Aquifer that supplies regional agriculture and much needed groundwater to
Amman. Interstate (regional) transboundary groundwater management models were developed for Greece
[Psilovikos, 2006], and for a U.S. case involving Mississippi and Tennessee [Cameron, 2009].

Conflicts can also arise when water managers fail to meet their mandate to provide supplies to the public.
The 2003–2004 drought in Chennai, India’s sixth most populous city, led to the complete shutdown of the

Figure 7. Conflicts can arise when international transboundary aquifers are exploited (data from Puri and Aureli [2009, update in 2012]).
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piped supply system for almost a year. To cope with more typical undersupply, 420,000 mostly private wells
have been drilled in the city, and yet many of them went dry during this period. With all of the surface reser-
voirs depleted and limited municipal groundwater pumping capacity, the failure of the water manager led
to the emergence of private tanker trucks delivering high-cost water to the 4.5 million inhabitants until the
resumption of monsoonal rains. A multiagent model was able to capture the dynamics of this system and
explore the benefits of rooftop rainwater harvesting as well as quantify current and future vulnerability to
potential drought recurrence [Srinivasan et al., 2010a, 2010b, 2012].

4. Perspectives on Future Research Needs

4.1. Historical Context
The historical research and implementation focus of groundwater simulation-optimization models has been
divided into two types of problems: engineering design and hydroeconomics. Engineering design tends to
involve hydraulic problems such as optimal capture and containment of a contaminant plume or dewater-
ing of an excavation. Objectives typically minimize costs or surrogates for costs, such as pumping rates and
lifts or the volume of contaminated water removed, or pumped, treated and re-injected. Hydroeconomics
consider problems at the interface between hydrology and human behavior and is used primarily for policy
evaluation. In general, these models have combined groundwater or integrated groundwater-surface water
models with optimization methods to understand the interactions among physical and chemical processes,
and economics, in response to policy instruments. Such models can provide valuable insight into the likely
influence of taxes, quotas, regulations, water allocation strategies, water rights structures, and water mar-
kets on system reliability, resilience, and sustainability.

4.2. Strategic Research Needs
4.2.1. What Should be the Thrust of Continued Research?
A critical avenue for research is representing complex coupled human-natural systems. Understanding the
multifaceted interactions among social, biophysical, and engineering factors that determine the availability
of water resources is crucial to identifying sustainable trajectories for future development [Sivapalan et al.,
2012]. Although a vast body of research exists in different and sometimes fragmented subfields, future
efforts need to address the interactive and synergistic effects of multiple natural and human factors on
short-term groundwater vulnerability and long-term resource sustainability. Within this context, innovative
approaches and techniques should be developed to allow for consideration of climate and land-use change,
urbanization, economic development, ecohydrology, and logistical constraints in groundwater manage-
ment. This huge undertaking represents a major challenge for the hydrologic research community, and the
need for an integrated system framework is necessary for environmental assessments aimed at reducing
vulnerability in a move toward sustainability [Liu et al., 2015].

Sustainable water management can be considered a part of an integrated hydrologic-ecological-economic
system at the river basin scale [Cheng et al., 2014]. Within this framework, groundwater and surface water
are managed as a single resource with simultaneous consideration of food, ecosystem, and water security.
Because of the complexity and computational intensity in the type of simulation models usually needed to
represent a coupled system, the surrogate modeling approach is well suited to derive an approximate but
highly efficient simulation engine that may be run many hundreds of times by an optimization algorithm.
The optimization component also needs to be very flexible and efficient, able to accommodate both natural
and human dimensions [e.g., Cai, 2008; Cai et al., 2015].

Although many problems can be formulated within a constrained optimization framework, there are many
that involve hierarchical decision-making, rules, learning, traditions, and compromise. To handle policy evalua-
tion and water allocation in these highly complex human-natural systems, an optimization framework is likely
to be overly restrictive. Multiagent models provide a path forward as certain agents, such as farmers, may be
represented as risk averse profit maximizers, while other agents, such as water managers, may operate under
conditions of constant tradeoffs based on a set of rules with no clear or necessary optimization strategy.

The agent-based model (ABM) has emerged as a versatile approach to represent the coupled human-natural
system (CHNS), a term first used by Liu et al. [2007]. ABMs define the relationships between simple individual
behaviors, collective structures, and interactions with the environment [Macy and Willer, 2002]. The agents in
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an ABM are autonomous entities characterized by internal goals and behavioral rules. Agents interact with
one another and with the natural and institutional environment shared by all agents. In systems modeling,
there is often a distinction made between ABMs and Multiagent Systems (MASs), where ABMs are those in
which agent behavior results in an emergent property (such as bird flocking behavior), while MASs represent
complex interactions among agents and system-wide responses but do not necessarily result in an emergent
property of the system. Recently, MASs have been applied to hypothetical basin management involving sur-
face water supply [Yang et al., 2009], but there have been very few applications to groundwater management
modeling. The analysis of the Chennai, India water crisis (see section 3.6 Conflict) by Srinivasan et al. [2010a,
2010b] employed a multiagent modeling framework coupled to a groundwater model to represent the
behavior of the water manager, the private water tanker operators, and user demand for water. Water users
occupied successive categories based on their physical and economic access to types of supply and ability to
store water. These water users were able to migrate to higher access categories as their incomes grew over
time. Mulligan et al. [2014] present a MAS for assessing groundwater policy in which the economic decision
models are coupled with a physically based groundwater flow model. Their study of the Republican River
overlying a portion of the Ogallala aquifer demonstrates the challenges when coupling realistic hydrogeology
and human behavior models to assess groundwater management policies.

With the exception of economists, the broader social science community has been reluctant to embrace the
integrated human-biophysical optimization or MAS modeling effort. The reasons are undoubtedly many, but
two explanations are that there are those in the noneconomics branches of the social sciences who: (1) do
not rely on mechanistic/process models, so translating their expertise into a quantitative representation is an
obstacle, and (2) believe that it is not possible to ‘‘model society,’’ which they perceive as the goal of MAS or
other integrated models. The hydrologic science community can deal with the first obstacle by working more
closely with social scientists to better quantify actions and reactions for which they have insight. Regarding
the second impediment, it is a misrepresentation to claim that the integration approach is attempting to
model society. Rather the goal is to successfully represent coupled biophysical-human responses, which one
can do by predicting outcome or estimating the probability of outcome of a group process. One need not rep-
resent every individual conversation, debate, or negotiation to predict likely outcomes. Water users and water
managers typically have good reasons to operate the way they do. They have certain predetermined needs
and rules, seek to maximize net benefits, and want to contain risks by investing in some form of insurance
(e.g., overdesign, excess pumping, or storage capacity) to reduce potential loss due to their vulnerability. Out-
come of the coupled human-natural process can be quantified and integrated into a policy evaluation frame-
work for water allocation. Some inroads have been made along these lines, but they have been restricted to
issues that are ultimately linked to economics rather than other fields of social science, such as history, human
geography, anthropology, political science, or psychology.

4.2.2. In Which Locations and Environments Should the Hydrologic Science Community Focus its
Efforts?
The regions for which there are tremendous benefits from simulation-optimization models are those that
(1) are highly groundwater-dependent, (2) where large-scale transboundary water issues are paramount,
and/or (3) in which the common pool resource needs to be managed. These categories are not mutually
exclusive. Groundwater dependency can be for human needs and involve vulnerability associated with haz-
ards, human health, food security, and energy or other natural resources. Transboundary and common pool
groundwater use create vulnerability due to potential conflict. Groundwater-dependent ecosystems require
decisions on how to best balance environmental and human needs. All these are problems involving a set
of objectives and constraints, prerequisites for application of simulation-optimization. In addition, policy
evaluation and allocation problems can be so complex that current simulation and optimization methods
may be insufficient (e.g., inefficient or ineffective) to be useful. Therefore, a need exists for technical
research advances aimed at improving the ability to better account for all relevant modeled processes
(structural uncertainty), deal with unrepresented variability in existing model representations (parameter
uncertainty), and enhance model performance (efficiency).

4.3. Technical Research Needs
4.3.1. Integrating Uncertainty and Risk
Most natural groundwater systems are characterized by significant heterogeneities in the physical and
chemical properties of the aquifer systems. Such heterogeneities pose a major difficulty to groundwater
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management modeling. No management strategies can be ‘‘optimal’’ if the aquifer simulation model has
not been reliably calibrated. In fact, no matter how thoroughly a simulation model is calibrated, it always
has some degree of uncertainty in both model input and output. Moreover, substantial uncertainties are
always present in the economic and policy factors. Thus, how to adequately accommodate the uncertainties
in simulation and economic models has long been a focal point in groundwater management modeling
since it became an active research subject. This topic will likely remain a major area of future research as
groundwater management modeling is increasingly integrated into broader coupled human-natural sys-
tems to address multifaceted water management problems of today and tomorrow.

Traditionally, stochastic programming has been commonly used to account for the uncertainties in aquifer
properties. The two main approaches are inclusion of probabilistic formulations using chance constraints by
predefining a constraint reliability level [Wagner and Gorelick, 1987; Sawyer and Lin, 1998] and the ‘‘stacking’’
approach in which multiple realizations of an uncertain aquifer parameter such as hydraulic conductivity
are generated and the management model simultaneously satisfies the constraints for all realizations [Wag-
ner and Gorelick, 1989; Chan, 1993, Wagner et al., 1992, Pena-Haro et al., 2011]. Morgan et al. [1993] combine
the stacking approach with chance constraints in an LP formulation. Whenever the stacking approach is
used, the solution reliability (one minus the probability of failure) is a nonlinear function (approximated as
n/(n11)) of the number of simultaneous realizations, n, considered in the constraint stack [Chan, 1993]. The
computational cost is proportional to the number of realizations. Because NLP is used to solve the problem,
a global optimum is not guaranteed.

However, when a global optimization algorithm is used with the stacking approach, which may require hun-
dreds of simulation runs for each realization, the approach is computationally burdensome. Besides the sur-
rogate model approach previously discussed, other innovations are needed to make assessment and
incorporation of uncertainties more computationally tractable. Examples of past works include intelligent
‘‘stack ordering’’ of realizations to identify and use only a most critical subset of all realizations in the optimi-
zation process [Bayer et al., 2008] and development of the so-called ‘‘noisy genetic algorithm’’ to signifi-
cantly reduce the number of realizations required in the application of a simple genetic algorithm [Smalley
et al., 2000; Wu et al., 2006].

Relative to the above multirealization approach, several techniques have been used to quantify the uncer-
tainties in a complex simulation model with far less computational burden. Andricevic and Kitanidis [1990]
were the first to use DDP to optimally stage aquifer remediation while gathering and updating hydraulic
(conductivity) and transport (dispersivity) values. Lee and Kitanidis [1991] applied the ensemble Kalman filter
(EnKF), using real-time aquifer measurements to simultaneously estimate hydraulic parameters while deter-
mining remediation decisions. Chen and Zhang [2006] present a highly efficient EnKF algorithm for uncer-
tainty quantification and data assimilation. Hendricks-Franssen and Kinzelbach [2008] introduced an
improved EnKF by reducing the filter inbreeding problem. The probabilistic collocation method is another
computationally efficient method for uncertainty analysis that has been applied to groundwater models [Li
and Zhang, 2007; Wu et al., 2014]. It can be expected that these methods will become more widely adopted
and used in groundwater management modeling in the future.

A fundamental technical challenge for groundwater management modeling is to translate uncertainties
from multiple sources, including aquifer properties, future climate forecasts, water demand projections,
land-use change, and economic valuation of water, into decision support systems that quantify risk and are
easy to use by policy makers and water managers. Risk-based engineering design compares predetermined
pumping/remediation scenario costs (including regulatory penalties), benefits, and probability of failure
(developed by Massmann and Freeze [1987]; also see the comprehensive review by Tartakovsky [2013]).
Such methods quantify risk very well, but do not generally result in optimal hydraulic schemes. A discussion
of how such formulations compare to simulation-optimization based ones, and how optimization can be
joined with risk-based formulations is presented in Freeze and Gorelick [1999]. Harou et al. [2009] provide an
overview of coupled hydrologic-economic models that integrate spatially distributed water resource sys-
tems, infrastructure, management options, and economic values to provide policy insights and better man-
agement strategies. A continuing need for the future in the groundwater management arena is to develop
conceptually integrative and computationally efficient management modeling tools that are capable of
considering predictive uncertainty in the face of multiple threats posed to groundwater quantity and qual-
ity, plus the physical (geophysical) and economic effects of overexploitation.
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4.3.2. Mitigating Computational Burdens
The simulation models required to represent highly coupled hydrologic processes, especially those involv-
ing ecological systems, are becoming increasingly complex and computationally demanding. This is espe-
cially true when a global optimization algorithm must be employed to deal with nonlinear and local optima
problems requiring hundreds of simulation model runs in a global algorithm.

In the past, efforts to mitigate the computational burden have generally followed two paths. One is to com-
bine elements of gradient-based LP or NLP with a global algorithm at different stages of optimization. The
other is to construct a response surface or surrogate model to replace the simulation model in the
simulation-optimization framework. Zheng and Wang [1999] present an integrated approach in which a
global optimization algorithm, tabu search, is used to find the optimal well locations, while linear program-
ming is used to find the optimal pumping rates. In essence, the large mixed integer problem is decomposed
into smaller subproblems, each of which has a much smaller number of decision variables so that the opti-
mal solution can be reached much faster. Aly and Peralta [1999] combine artificial neural networks with a
genetic algorithm to reduce the number of forward simulations required. The idea is to use an artificial neu-
ral network to construct a response function after a certain number of forward simulations have been per-
formed, and then use this approximate response function in lieu of typical linear response functions
created directly from a simulation model.

In more recent works, surrogate-assisted approaches have been formally introduced to greatly reduce com-
putationally expensive global optimization algorithms [Regis and Shoemaker, 2009, 2013; Muller et al., 2013;
Wild and Shoemaker, 2013]. This is accomplished by constructing a surrogate model (response surface) to
select candidates for integer and continuous decision variable points at which the computationally expen-
sive objective and constraint functions are to be evaluated. In the future, continuing efforts should be made
to develop novel methodologies aimed at improving the computational efficiency of optimization algo-
rithms. Surrogate-assisted algorithms discussed above represent a major research direction. Various forms
of surrogate modeling summarized by Razavi et al. [2012] may be used in the simulation-optimization
framework. Because of the inherently parallel nature of global optimization algorithms, development of par-
allel algorithms, including high-performance cloud computing platforms, is another important direction for
further research [e.g., He et al., 2007; Hunt et al., 2010; Yang et al., 2013b].

5. Managing Unsustainable, Vulnerable, and Sustainable Groundwater Systems

Aquifer management models can be of benefit to water resources planning and allocation policy evaluation
in different ways depending on whether groundwater system use is unsustainable, vulnerable, or sustain-
able. Where fossil aquifers are being mined unsustainably, or where aquifers with minimal recharge and
inconsequential natural discharge are being tapped, the trajectory of economic depletion can be managed
for a so called ‘‘soft landing.’’ Major nonrenewable aquifer systems exist throughout portions of the (water-
scarce) world, including the Saq and Arabian platform system including the Disi aquifer in the Middle East,
the Murzuk Basin, Lake Chad Basin, and Nubian Aquifer in northern Africa, the Great Artesian Basin in Aus-
tralia, the West Siberian Artesian Basin in Russia, and the Basin and Range aquifers of Arizona in the U. S.
[Margat and van der Gun, 2013]. Societal goals reflecting agricultural production needs can be coupled to
groundwater models to minimize physical, economic, and social impacts over time, with the understanding
that continued use of the resource is indeed untenable. In regions where aquifer storage is large, the plan-
ning horizon for aquifer mining will be multigenerational, potentially lasting hundreds of years.

Turner et al. [2003] define vulnerability as ‘‘the degree to which a system, subsystem, or system component
is likely to experience harm due to exposure to a hazard, either a perturbation or stress/stressor.’’ Vulnerabil-
ity is a response to a shock and is distinctly different from long-term unsustainability. Simulation-
optimization is perhaps best suited to help identify strategies to reduce vulnerability by running the model
under a suite of counterfactual conditions and targeting resilient solutions. Water planners can then select
the course of action that meets their risk tolerance.

A sustainable groundwater system is one in which pumping can safely continue indefinitely. If water man-
agers adopt the definition of safe yield as the maximum prolonged pumping such that all logistic, environ-
mental, legal, social, economic, and physical constraints are met, then sustainable groundwater use
solutions can be identified. However, the other essential requirement is a complete understanding of the
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future hydrogeologic system, including ultimate long-term capture of surface waters and rejected recharge,
as well as water quality degradation. Aquifer management models provide the right framework to identify
sustainable pumping policies, but it remains a challenge to satisfy both the need for a complete manage-
ment problem formulation and a comprehensive groundwater model.
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