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Accounting for groundwater in stream fish thermal habitat responses
to climate change
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Abstract. Forecasting climate change effects on aquatic fauna and their habitat requires
an understanding of how water temperature responds to changing air temperature (i.e.,
thermal sensitivity). Previous efforts to forecast climate effects on brook trout (Salvelinus
fontinalis) habitat have generally assumed uniform air–water temperature relationships over
large areas that cannot account for groundwater inputs and other processes that operate at
finer spatial scales. We developed regression models that accounted for groundwater
influences on thermal sensitivity from measured air–water temperature relationships within
forested watersheds in eastern North America (Shenandoah National Park, Virginia, USA, 78
sites in nine watersheds). We used these reach-scale models to forecast climate change effects
on stream temperature and brook trout thermal habitat, and compared our results to previous
forecasts based upon large-scale models. Observed stream temperatures were generally less
sensitive to air temperature than previously assumed, and we attribute this to the moderating
effect of shallow groundwater inputs. Predicted groundwater temperatures from air–water
regression models corresponded well to observed groundwater temperatures elsewhere in the
study area. Predictions of brook trout future habitat loss derived from our fine-grained models
were far less pessimistic than those from prior models developed at coarser spatial resolutions.
However, our models also revealed spatial variation in thermal sensitivity within and among
catchments resulting in a patchy distribution of thermally suitable habitat. Habitat
fragmentation due to thermal barriers therefore may have an increasingly important role
for trout population viability in headwater streams. Our results demonstrate that simple
adjustments to air–water temperature regression models can provide a powerful and cost-
effective approach for predicting future stream temperatures while accounting for effects of
groundwater.
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INTRODUCTION

Stream temperature is an underlying driver of many

biological processes in aquatic systems and consequently

a primary factor defining habitat suitability for stream

organisms. Regional air temperatures are expected to

increase substantially over the next century due to

increasing concentrations of greenhouse gasses (Ruos-

teenoja et al. 2003, Hostetler et al. 2011). Thus, climate

change poses a significant threat to the viability of

aquatic species, and predicting the ecological conse-

quences of climate warming has become a principal

objective of stream ecologists and fisheries managers

(e.g., Comte et al. 2013). Warming stream temperatures

are of particular concern for salmonids that have high

cultural, recreational, and commercial value and low

thermal tolerance thresholds (Eaton et al. 1995, Battin et

al. 2007, Wehrly et al. 2007, Isaak et al. 2012).

The historical distribution of native brook trout

(Salvelinus fontinalis) has been severely reduced due to

deforestation, water pollution, and the introduction of

nonnative trout, and remaining riverine populations are

largely limited to forested headwater streams (i.e., up to

third-order streams) throughout much of their native

range (Flebbe et al. 1988, Hudy et al. 2008). As a result,

the ability of the species to respond to climate change at

large spatial scales (e.g., northward migrations) may

already be compromised by existing stream network

fragmentation and the paucity of cold water mainstem

habitats. Brook trout persistence therefore may depend

on how headwater stream habitats respond to changing

air temperature regimes, and how these changes affect

survival and reproduction rates of local populations.

Climate change may not only reduce the amount of

thermally suitable habitat available for feeding and

reproduction, but may also increase stream network

fragmentation through the introduction of thermal

barriers that restrict dispersal and reduce population

viability (Morita and Yokota 2002, Letcher et al. 2007).
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The thermal regimes of streams are controlled by

energy exchanges across the water surface and the

streambed (Webb et al. 2008). Although the direct

exchange of heat from warm air to cooler water (i.e.,

convection) represents a relatively minor influence on

stream temperature, air temperature is typically corre-

lated with regional variation in solar radiation that has

been implicated as the most influential driver of stream

temperature (Caissie 2006, Webb et al. 2008). As a

result, air temperature is commonly used as a surrogate

for atmospheric energy inputs, especially in large-scale

studies of stream temperature dynamics (Johnson 2003).

Forecasting climate change effects in freshwater ecosys-

tems requires an understanding of how predicted

changes in air temperature will affect stream tempera-

tures (i.e., thermal sensitivity, TS; Kelleher et al. 2012).

Previous research predicting climate change effects on

fish habitat has assumed strong (e.g., 1:1) and spatially

invariant relationships between air and stream temper-

atures such that stream temperatures were predicted to

change as a spatially uniform process matching predict-

ed air temperature changes (e.g., Meisner 1990a, Eaton

and Scheller 1996, Rahel et al. 1996, Clark et al. 2001,

Mohseni et al. 2003, Flebbe et al. 2006, Rieman et al.

2007). This approach has allowed for the development

of large-scale models capable of predicting stream

temperatures over large regions because only air

temperature data are required for stream temperature

predictions, and local air temperatures can be obtained

from downscaled regional climate data (e.g., Eaton and

Scheller 1996) or estimated using surrogates such as

elevation and latitude (e.g., Flebbe et al. 2006).

The assumption that stream temperature is highly

sensitive to changing air temperature is based on the

results of a relatively small number of studies where

strong correlations between air and water temperatures

were observed over large regions (Stefan and Preu-

d’homme 1993, Pilgrim et al. 1998, Bogan et al. 2003).

These empirical observations were derived mainly from

data collected from sites in larger streams and rivers

where long-term temperature and flow records are

prevalent (e.g., U.S. Geological Survey [USGS] gage

sites). However, at large spatial scales, stream networks

often exhibit patchy thermal conditions due to spatially

heterogeneous influences of riparian shading, ground-

water upwelling, and valley form and aspect (Constantz

1998, Torgersen et al. 1999, Poole and Berman 2001,

Ebersole et al. 2003). These influences appear to be

particularly important in headwater areas where flow

volumes are low and land–water interactions are strong

(Story et al. 2003, Danehy et al. 2005, Tague et al. 2007,

Dent et al. 2008). The sensitivity of headwater streams

or stream reaches to changing air temperature regimes

therefore may vary substantially over relatively small

spatial extents, and large-scale models that do not

incorporate fine-scale variation in thermal sensitivity

may not accurately predict thermal habitat at ecologi-

cally relevant spatial scales.

A precise understanding of the drivers of stream

temperature requires detailed hydrometerological mea-

surements to inform complex analytical models (Webb

et al. 2008). The data demands and costs associated with

detailed heat budgets usually preclude their use for

characterizing stream temperature and associated driv-

ers at large numbers of sites. As a result, the use of low-

cost, automated temperature data recorders has become

increasingly popular for the study of stream temperature

dynamics because they provide a relatively cost-effective

means of assessing thermal conditions at a fine spatial

resolution (Dunham et al. 2005, Johnson et al. 2005).

Paired air and water temperature data have been found

to be useful for characterizing spatial variation in stream

temperature patterns (Kelleher et al. 2012, Hilderbrand

et al. 2014, Trumbo et al. 2014).

However, the extent to which such correlational data

provided by site-specific regression models can be used

to predict future stream temperature has not been fully

evaluated (Johnson 2003, Arismendi et al. 2014). In

particular, the predictive utility of these models may be

limited in headwater streams where groundwater con-

tributions are important. Groundwater inputs buffer

daily and seasonal extremes, and generally cool stream

temperature in summer and warm stream temperature in

winter (Caissie 2006, Webb et al. 2008). As a result, air–

water temperature regression models are often weaker

and more variable in headwater stream sites with large

groundwater contributions (Erickson and Stefan 2000,

Danehy et al. 2005, Morrill et al. 2005, Kelleher et al.

2012, Hilderbrand et al. 2014). Although site-specific

regression coefficients may provide useful information

regarding the relative sensitivity of sites to seasonal air

temperature changes, they may not provide robust

models for predicting current or future water tempera-

tures.

Additionally, such approaches commonly assume that

the relative insensitivity of groundwater-dominated

streams to seasonal variation in air temperature will

persist at longer (e.g., decadal) time scales. This

assumption may be reasonable for groundwater origi-

nating in karst or relatively young volcanic geologic

settings where groundwater is often stored in deep

aquifers for extremely long periods of time (e.g.,

centuries or millennia) prior to discharging into streams

(Alley 2001, Hanson and Dettinger 2005, Worthington

2007). However, in older geologic settings, such as the

Blue Ridge and Piedmont physiographic provinces of

the eastern United States, groundwater is largely stored

within shallow residuum deposits with short flow paths

to stream discharge points (Lynch 1987). As a result,

groundwater residence times are typically short in these

regions (e.g., zero to three years; Plummer et al. 2001).

Nevertheless, recent evidence suggests that, like deep

groundwater, groundwater originating from shallow
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sources also has a strong moderating effect on seasonal

stream temperatures (Story et al. 2003, Johnson 2004,

Leach and Moore 2011). In contrast to deep ground-

water, however, the temperature of shallow groundwater

has been shown to be sensitive to air temperature change

over longer time scales using statistical (Kurylyk et al.

2013, Menberg et al. 2014), as well as mechanistic

physical models (Taylor and Stefan 2009, Kurylyk et al.

2014) of groundwater temperature, and therefore should

be sensitive to climate. New methods are therefore

needed to account for uncertainty associated with the

effects of changing climate on groundwater temperature

over the long term.

In this paper, we describe an approach to account for

shallow groundwater influence in statistical models of

air–water temperature relationships. We adjusted re-

gression models to assess spatial variation in thermal

sensitivity at the stream reach spatial grain, and

incorporated spatial variation in thermal sensitivity into

simulations designed to forecast climate change effects

on brook trout thermal habitat. We compared predic-

tions of future brook trout habitat under climate change

derived from these fine-grained regression models to

those derived from large-scale modeling approaches. We

addressed this research topic in Shenandoah National

Park, a critical area for native trout conservation in the

Appalachian region (Hudy et al. 2008).

METHODS

Study area and site selection

Shenandoah National Park (SNP) is a long narrow

protected area located along the spine of the Blue Ridge

Mountains of Virginia, USA (Fig. 1). The park ranges in

elevation from 168 to 1125 m and encompasses nearly

80 000 ha of mostly forested terrain. The climate is

humid temperate, with mean annual air temperatures

historically ranging from 7–98C at higher elevations to

12–148C at lower elevations (Jastram et al. 2013). The

park is underlain by three principle bedrock types:

granitic, metabasalts, and siliciclastic rocks (Fig. 1), each

of which represent about one-third of the total park area

(Gathright 1976, Southworth et al. 2009). Limestone is

also present in the park but is rare (,2% of park area).

Due to differences in porosity, erodibility, and compo-

nent mineral profiles, these rock types are primary

determinants of soils and vegetation (Young et al. 2009),

and water drainage patterns (Mesko et al. 2000, Winter

2001).

Water resources in SNP include over 1000 km of

streams draining into the Chesapeake Bay via the

Rappahannock, Potomac, and James Rivers. The

hydrography of the park is almost entirely headwaters

(i.e., less than third order) with 68% of the total stream

length represented by first-order streams, 24% by

second-order streams, and 8% by third-order streams

(Snyder et al. 2013). In addition, perennial springs are

prevalent and groundwater is a major driver of stream-

flow in SNP streams (DeKay 1972, Lynch 1987, Snyder

et al. 2013). However, groundwater supplies in the park

are largely limited to that contained within shallow (0–9

m thick) layers of residuum and colluvium that overlie

bedrock; deeper groundwater, originating from bedrock

fractures, represent a minor source of groundwater

(Lynch 1987, Plummer et al. 2001, Busenberg and

Plummer 2014). Groundwater contributions to surface

flow exhibit considerable spatial variation within and

among watersheds depending upon complex interactions

between bedrock type, depth of regolith, and the

steepness of the surrounding terrain (Lynch 1987,

Kasahara and Wondzell 2003). Although streams

draining most of the park are considered perennial,

reaches within them are known to dry periodically

during summer base-flow conditions (Lynch 1987).

We used a hierarchical spatial design to select 78

stream reaches within nine focal watersheds for temper-

ature sampling. Focal watersheds were selected to

represent park-wide variation in bedrock geology

(granitic, basaltic, silicilastic) and solar radiation (kilo-

watt hours per square meter; Table 1). Site locations

within focal watersheds were selected to represent a

longitundinal gradient in stream volume and elevation

as represented by contributing basin area (site locations

were all third order or less). We used USGS 10-m digital

elevation models (generalized to a 15-m cell size) in

ArcGIS and the ArcHydro extension (Maidment 2002)

to generate watersheds above potential sampling points

along streams. We summarized bedrock and surficial

geology within watersheds using digital maps provided

by Morgan et al. (2004). We reclassified the detailed

geologic map into broad categories of rock type

(silisiclastic, granitic, and metabasalt), and areas with

significant alluvial deposits. We computed estimates of

summer solar radiation (kW hours/m2) using the Solar

Radiation toolbox in ArcGIS 9.3 (ESRI 2009). These

calculations were performed for all raster cells within all

major watersheds in the park. We used these landscape

attributes as sampling strata because we believed a priori

that these broad categories and their correlates would

effectively represent park-wide variation in landscape

gradients important to air and water temperature.

Temperature data collection and climate forecasting

Water temperature data were collected at all 78 reach

locations (Fig. 1) during the summer of 2012 (23 June–7

September). The sample period was selected to incor-

porate the warmest time of the year when stream

temperatures are likely to be most stressful for brook

trout (Ensign et al. 1990, Robinson et al. 2010).

Temperature was measured every hour with HOBO

Pro v2 thermographs (accuracy ¼ 0.28C, drift ¼,0.18C

per year; Onset Computer Corporation 2009). Thermo-

graphs were installed in nonturbulent flowing water

habitats, and were housed within short sections of white
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polyvinyl chloride (PVC) pipes with holes drilled into

the sides to facilitate water exchange and shield them

from direct sunlight. Streams dried considerably in late

summer, and the complete elimination of streamflow

was noted at several sites in mid-August. Thus, we

discarded data collected after 10 August at all sites.

Maximum summer temperatures in 2012 were found to

occur prior to 10 August at all sites with consistent

streamflow, and therefore we are confident that the

period of record included maximum stream tempera-

tures. From the hourly data we computed daily mean

water temperatures (DMWT) for each reach.

We also used HOBO thermographs to measure air

temperature at a subset of stream reaches (three reaches

per watershed, total of 27 air loggers). Within each focal

watershed, we deployed air temperature gages at sites

near the top of the watershed (i.e., 100-ha site), the

bottom-most site (near the park boundary), and a site

intermediate in elevation. At each reach, we attached air

temperature gages to the north side of large trees (;2 m

[6 feet] high) in shaded areas near the stream bank. We

mounted the air thermographs within PVC pipes to

reduce direct light exposure. As with water temperature

data, we summarized hourly air temperature data as

daily mean air temperature (DMAT).

To estimate air temperature for unsampled reaches,

we modeled DMATs across all 27 locations using a

multiple regression model that included the grand mean

daily air temperature (daily air temperature averaged

over all 27 loggers) and site elevation as predictors.

Additional predictor variables including measures of

solar radiation and canopy cover, as well as all two-way

interactions (elevation 3 grand mean air temperature,

elevation3 canopy cover, grand mean air temperature3

canopy cover, and canopy cover3 solar radiation), were

incorporated in preliminary models but were found to be

uninformative. The air temperature model explained

93.3% of daily variation. We used predicted air

temperature values to assess air–water temperature

relationships at all 78 sites.

We simulated future summer daily air temperature

regimes (i.e., DMATs) for each site under three climate

change scenarios: 1.58C, 3.08C, and 5.08C increases in

summer mean air temperatures above those observed in

2012. These simulated air temperature increases (SATI)

roughly correspond to the range of forecasts for the

eastern United States that is expected to occur over the

next 50–100 years from alternative general circulation

models (GCMs) and scenarios (Ruosteenoja et al. 2003,

Hostetler et al. 2011, Rawlins et al. 2012). However, the

12-month period leading up and including our sampling

period (September 2011–August 2012) was one of the

warmest on record. Over the 74 years of records

collected at the SNP weather station located near Luray,

Virginia, only two years (i.e., ,3% of records) had

warmer average annual air temperatures. Using the 2012

data as a baseline probably overestimates future air

temperatures and therefore we view our climate fore-

casts as representing a worst case scenario. Based on

historical records, the 2012 study year was slightly dryer

than average (38.8% of records had lower total annual

precipitation).

We used the delta method (Fowler et al. 2007) to

downscale predictions in mean summer air temperature

derived from GCMs to individual sites and daily time

steps. For each site, we used the relationship between

each DMAT and the overall summer mean observed in

2012 to simulate daily air temperatures under each

climate change scenario. Thus, within a site, the relative

daily temperature pattern observed in 2012 remained the

same for simulated future climates, only the overall

mean summer temperature changed.

Modeling stream temperature and thermal sensitivity

We used least-squares linear regression methods to

predict stream temperatures from air temperature, and

to estimate thermal sensitivity. Initially, we used a

simple linear regression model that used modeled daily

mean air temperature (DMAT) to predict observed daily

mean water temperature (DMWT). We also developed

models where hourly air and water temperature data

were averaged over weekly instead of daily time steps.

We found that daily and weekly models were highly

correlated (Pearson’s r¼ 0.96 and 0.90 for slopes and y-

intercepts, respectively), and so inferences regarding

among-site differences in air–water temperature rela-

tionships would be the same irrespective of the time step

used. In contrast to other studies (e.g., Stefan and

Preud’homme 1993, Kelleher et al. 2012), we found that

regression models based on daily time steps had a better

goodness of fit (R2) for 56 of the 78 sites, suggesting that

air–water temperature time lags are less important, and

daily time steps may be more appropriate, for smaller

streams. We therefore only report results for the daily

time step.

We examined plots of DMAT and DMWT through

time and found that DMWT did not track daily

variation in DMAT at some sites. Rather, these sites

exhibited a pattern of gradual warming through the

summer (see Results). We attribute the observed

cumulative heating to the attenuating influence of

shallow groundwater and hyporheic exchanges with

surface flow on stream temperature. We modeled the

observed cumulative heating by adding an additional

measure of air temperature to site regression models, the

accumulated degree-days above mean summer air

temperature (ADD). We used mean summer air

temperature as a threshold value for computing ADD

because it is directly related to summer ground surface

temperature, the actual driver of groundwater temper-

ature during summer (Kurylyk et al. 2013). We used the

two-variable regression models to predict DMWT under

the current (2012) climate scenario. For each site, the
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multiple linear regression models take the standard form

as follows:

DMWTi ¼ b0 þ ðb1MDATiÞ þ ðb2ADDiÞ ð1Þ

where DMWTi is predicted DMWT at day i in 8C,

MDATi is MDAT at day i in 8C, ADDi is ADD at day i

in degree-days, b0 is the model y-intercept, and b1 and b2
are the regression coefficients for the predictor variables

MDAT and ADD. We used the partial coefficient of

determination for the ADD term (R2
ADD) derived from

the model as an estimate of groundwater influence for

each site. R2
ADD is a measure of the amount of variation

in DMWT explained by ADD, and therefore we argue

FIG. 1. Shenandoah National Park in northern Virginia, USA. Stream temperatures were measured at 78 sites in nine
watersheds within the park that stratified bedrock geology, solar radiance, and elevation and basin area.

July 2015 1401GROUNDWATER AND FISH THERMAL HABITAT



that it is a reflection of the proportion of streamflow

comprised of groundwater. R2
ADD is computed as the

product of the standardized regression coefficient and

the Pearson correlation coefficient using the equation

R2
ADD ¼ b2

SADD

SDMWT

� �� �

3
1

n� 1

Xn

i¼1

ADDi � ADD

SADD

� �
DMWTi � DMWT

SDMWT

� �" #

ð2Þ

where b2 is the regression coefficient for the ADD term

from Eq. 1, SADD is the standard deviation of ADD

values, SDMWT is the standard deviation of DMWT

values, n is the number of observations (days), ADDi is

ADD at day i (degree-days), DMWTi is DMWT at day i

(in 8C), ADD2 is mean ADD, and DMWT is mean

DMWT.

To predict DMWT under future climate change, we

modified the regression equations to account for long-

term (e.g., annual or decadal) increases in groundwater

temperature that may be expected to accompany climate

change (Taylor and Stefan 2009, Kurylyk et al. 2013,

Menberg et al. 2014). We use the term long-term

groundwater thermal sensitivity (TSGW) to describe

the long-term response of groundwater temperature to

air temperature change, and define it mathematically as

the increase in groundwater temperature per 18C

increase in mean summer air temperature. This is

consistent with the terminology used to define stream

thermal sensitivity (TS).

For these modifications, we made use of the

observation from numerous studies (including this one;

see Fig. 2) that, in small forested watersheds, the slope

and y-intercept terms of air–water temperature regres-

sions are negatively related such that at groundwater-

dominated sites regression slopes are low and y-

intercepts approximate mean groundwater temperature;

whereas, at runoff-controlled sites, regression slopes are

typically high (e.g., .0.7) and y-intercepts approach 08C

(Webb et al. 2003, Caissie 2006, O’Driscoll and DeWalle

2006). For predicting future stream temperatures for

reaches where flow is completely comprised of ground-
water, the y-intercept term in the regression model

therefore should increase by the product of TSGW and
SATI, whereas the y-intercept term should not change at

sites where groundwater is unimportant.

In most headwater streams, flow is comprised of water
originating from both runoff and groundwater, and

therefore, the increase in the y-intercept term under
climate change would be a function of the proportion of

streamflow as groundwater, current groundwater tem-
perature, and TSGW. To account for this in climate

forecasts, we first modeled the relationship between
model y-intercepts and R2

ADD values observed under

current climate. We found that the following linear
model was suitable (i.e., residuals uncorrelated and

randomly distributed around zero) and explained 49%
of the variation in model y-intercepts:

b0 ¼ 5:75þ ð8:87 3 R2
ADDÞ þ e: ð3Þ

We assumed that variation in the y-intercept ex-

plained by the R2
ADD term is related to the proportion of

streamflow comprised of groundwater. We also assumed

that the remaining unexplained variation is indicative of
groundwater temperature. That is, we believed much of

the unexplained variation (e) in model 3 (Eq. 3) relates
to important among-reach variation in groundwater

temperature that is a function of latent variables
including site elevation, groundwater depth, soil type,

and the residence time of hyporheic flow (Johnson 2004,
Kurylyk et al. 2013). In this approach, we further

assumed that the effects of these latent variables are site-
specific and static over time. For predicting new model

y-intercepts under climate change, the equation would
take the following form:

B0adj ¼ 5:75þ
�

8:87þ ðTSGW 3 SATIÞ
�

3 R2
ADD

h i
þ e:

ð4Þ

B0adj values estimated from this model were then

substituted for b0 in Eq. 1 for predicting DMWT under
climate change yielding the following adjusted regres-

sion model:

TABLE 1. Description of the nine Shenandoah National Park, Virginia, USA, watersheds sampled
in this study.

Watershed name No. sites
Predominant

geology type (%) Basin area (ha)
Solar radiation
(kW hours/m2)

Piney River 7 basaltic (70.1) 1261 621.1
Whiteoak Canyon 8 basaltic (83.6) 1398 632.8
Jeremy’s Run 10 basaltic (73.5) 2204 588.7
Staunton River 9 granitic (100) 1073 601.2
Hazel River 9 granitic (100) 1335 599.9
Hughes River 10 granitic (89.1) 2258 605.1
Meadow Run 7 siliciclastic (100) 919 594.8
Paine Run 7 siliciclastic (100) 1269 577.2
Big Run 11 siliciclastic (70.1) 2898 570.8

Note: Values in parentheses are the total cumulative watershed area represented by the
predominant geologic type that drains each sample reach.

CRAIG D. SNYDER ET AL.1402 Ecological Applications
Vol. 25, No. 5



DMWTi ¼ b0adj þ ðb1MDATiÞ þ ðb2ADDiÞ: ð5Þ

It also follows that, for any SATI–TSGW scenario,

when we solve Eq. 4 for R2
ADD ¼ 1, values of B0adj

represent estimates of summer groundwater temperature

(GT). We estimated GT for each site under current and

future climates. We compared our model estimates of

GT under current climate with empirical GT measure-

ments collected in August and September of 1997 from

40 springs and 20 wells by Plummer et al. (2000). We

also compared our GT estimates to model predictions

from Collins (1925), in which GTs are approximately

equal to the local mean annual air temperature (MAAT)

þ 1.58C. The Collins (1925) method has provided

reasonable estimates of average GT in forested areas

across the native range of brook trout (Meisner 1990a).

We used monthly air temperature data derived from the

Luray weather station in Virginia, USA (latitude

38.66618 N, longitude 78.37278 W, elevation 427 m) to

derive regional MAAT, along with the lapse rate

equation of 18C decrease in air temperature per 188-m

increase in elevation to estimate MAAT at each site

(Meisner 1990a). We used air temperature records for

the 12-month period leading up to sampling for each

data set. Regional MAAT was 12.288C for the 1997

study year when direct GTs were measured and 13.558C

for the 2012 study year when GTs were modeled.

We used three alternative assumptions regarding TSGW:

TSGW ¼ 0 (groundwater temperature is independent of

long-term changes in air temperature), TSGW ¼ 0.66

(groundwater temperature will increase 0.668C per 18C

increase in air temperature), and TSGW ¼ 1.0 (1:1

relationship). The TSGW ¼ 0.66 and TSGW ¼ 1.0

assumptions bracket the ranges reported from recent

studies designed to assess thermal responses of shallow

groundwater to climate (Taylor and Stefan 2009, Kurylyk

et al. 2013) and almost certainly represent more realistic

assumptions regarding the long-term sensitivity of

groundwater temperature to climate than TSGW ¼ 0.

For each reach location, we used adjusted multiple

regression models (Eq. 5) to predict DMWT regimes

based on different combinations of the three TSGW

assumptions (0.00, 0.66, and 1.00) and the three alterna-

tive SATIs (1.58C, 3.08C, and 5.08C).

From our modeling results we computed stream

thermal sensitivity for each site. Stream thermal

sensitivity (TS) has been defined as the change in mean

FIG. 2. Relationships between predicted daily mean air temperature (DMAT) and observed daily mean water temperature
(DMWT) for reaches in Shenandoah National Park in 2012. Graphs (a), (b), and (c) show three examples that illustrate the range
of air and water temperature relationships observed in the park. Regression statistics (slope, y-intercept [y-int], and adjusted R2)
summarizing the linear relationship between air and water temperature are shown for each example site. Graph (d) shows the
relationship between model slope and y-intercept for all 78 sites, and graph (e) shows the relationship between model slope and
coefficients of determination (adjusted R2).
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stream temperature per unit change in mean air

temperature (Kelleher et al. 2012) and in linear

regression is represented mathematically as the model

slope (Mayer 2012, Hilderbrand et al. 2014, Trumbo et

al. 2014). However, in our adjusted regression models,

the y-intercept term changes under TSGW and SATI

scenarios, so TS cannot be directly derived from the

model parameters, but rather must be estimated

empirically. For this, we first simulated a 18C increase

in mean summer air temperature (SATI ¼ 1). We then

calculated mean summer water temperature from the

distribution of DMWTs from the model outputs from

Eq. 5 and computed TS as the difference between the

predicted mean summer water temperature at SATI¼ 1

and observed mean summer water temperature (current

climate). We estimated TS from our two-variable models

under all three assumptions of TSGW.

We also derived a measure of the thermal resistance of

brook trout habitat (TRBT), defined as the increase in

mean summer air temperature above current climate

required to render a reach unsuitable for brook trout.

We used a brook trout thermal threshold of 23.38C

maximum weekly average temperature (MWAT) to

define brook trout habitat suitability. The MWAT

threshold was derived from a field based assessment of

brook trout occurrence patterns across a gradient in

temperature and exposure periods in Michigan and

Wisconsin, USA (Wehrly et al. 2007). This MWAT

threshold corresponded closely with the upper thermal

limit of brook trout growth (determined to be 23.48C)

observed in laboratory experiments (Chadwick 2014).

MWAT was determined for each site by first calculating

the seven-day moving average of DMWT for every

seven-day interval throughout the summer, and then

selecting the highest value. Sites where MWAT exceed

23.38C were deemed unsuitable for brook trout occur-

rence. We used DMWT outputs from our adjusted

regression models to estimate MWAT for each TSGW–

SATI scenario.

Estimating TRBT is relatively straightforward in this

context because just as mean stream temperature is

linearly related to mean air temperature, so is MWAT,

such that

TRBT ¼
ð23:3�MWATSATI¼0Þ

ðMWATSATI¼1 �MWATSATI¼0Þ
ð6Þ

where TRBT is change in mean summer temperature,

23.38C is the brook trout thermal threshold,

MWATSATI¼0 is maximum weekly average temperature

derived from our adjusted regression models under the

current climate, and MWATSATI¼1 is the MWAT

derived from current mean summer air temperature þ
18C. Therefore, the difference between MWAT at SATI

¼ 0 and SATI ¼ 1 is the rate at which MWAT will

change per degree change in mean summer air temper-

ature. As with stream TS, we estimated TRBT under all

three assumptions of TSGW.

Predicting climate change effects on brook trout habitat

We used three modeling approaches to estimate
thermal habitat suitability for brook trout under current

and forecasted air temperature regimes. The alternative
approaches represent methods currently used to predict

potential effects of warming air temperatures on fish
habitat in streams, and vary with respect to assumptions

regarding air–water temperature relationships (i.e., TS),
and the spatial grain at which these relationships vary

across the landscape. All three approaches assume that
all other factors aside from temperature, including

average precipitation and streamflows, would not
change in future scenarios.

The first two approaches use our two-variable
regression models adjusted for TSGW in combination

with a known thermal threshold for brook trout
(MWAT ¼ 23.38C) to infer habitat suitability. The first

modeling approach, termed the ‘‘reach’’ method, uses
the site-specific parameters from our two-variable

regression models to predict daily water temperatures
from simulated daily air temperatures. For each climate

change scenario, sites where MWAT computed from
regression models are predicted to exceed the brook
trout thermal tolerance limit are deemed unsuitable.

This method evaluates habitat suitability at the stream
reach spatial grain and consequently does not assume

homogeneity or spatial structure (e.g., upstream to
downstream gradients) in TS among sites. There have

been few studies designed to assess thermal sensitivity at
this fine spatial grain (but see Danehy et al. 2005,

O’Driscoll and DeWalle 2006), and to our knowledge,
there have been no studies that use fine-grained

information to forecast climate change effects on stream
fish habitat across the landscape.

The second approach we termed the ‘‘watershed’’
method. This method is the same as the reach method,

except that instead of using air–water temperature
relationships derived from each site, only the relation-

ships derived from the lower most site in each watershed
(i.e., the pour-point) is used in modeling. Air–water

temperature relationships determined from each pour-
point site are applied at all sites within the watershed (i.e.,
nine regression models instead of 78 in our case). This

approach recognizes among-watershed variation, but, in
contrast to the reach modeling approach, assumes

thermal air–water temperature relationships will be
uniform among reaches within watersheds. Similar

watershed-scale approaches have been used to assess TS
and controls on stream temperature for salmonid habitat

(Isaak and Hubert 2001, Trumbo et al. 2014).
The third approach we termed the ‘‘boundary’’

method. In contrast to the first two approaches, the
boundary method does not use air–water temperature

data or relationships directly in habitat assessments.
Instead, this approach relies on empirical relationships

between air temperature, latitude, and elevation in
combination with current trout distribution data to infer

regional estimates of current and future trout habitat
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suitability. This approach was used by Flebbe et al.

(2006) to estimate climate change effects on trout habitat

in the southern Appalachians. Their method links a

boundary model of current trout distribution (defined by

minimum elevation) across a gradient in latitude, with a

lapse rate model that defines the change in air temper-

ature with elevation to estimate change in trout habitat

with increasing air temperature. For areas north of 35

degrees latitude (including all of SNP and most of the

range of eastern brook trout), their model was

ELE ¼ �exp½�163þ ð9:23 3 LÞ � ð0:126 3 L2Þ�

þð188 3 DTÞ ð7Þ

where ELE is minimum elevation in meters, L is latitude

in decimal degrees, and DT is the change in mean air

temperature (i.e., DT¼ SATI with values of 1.58C, 3.08C,

and 5.08C). The boundary model thus predicts minimum

elevation of suitable trout habitat under current (DT¼ 0)

and forecasted air temperature regimes. A site is deemed

unsuitable if the site elevation is lower than the modeled

minimum elevation for a given climate scenario. Implicit

in the model is the assumption that atmospheric factors

such as air temperature are the primary drivers of stream

temperature, and that thermal sensitivity of streams is

invariant. Specifically, the Flebbe et al. (2006) model

assumes that a 18C change in air temperature corresponds

to a 18C change in water temperature at all sites. Similar

boundary methods have been widely used to predict

changes in salmonid habitats over large areas associated

with climate change (Meisner 1990a, Keleher and Rahel

1996, Rahel et al. 1996, Rieman et al. 2007).

RESULTS

Modeling stream temperature and thermal sensitivity

Linear relationships between modeled DMAT and

DMWT were highly variable among the 78 sites in SNP.

Air–water relationships ranged from highly sensitive

sites where water temperature tracked daily variation in

air temperature (Fig. 2a) to more resistant sites where

water temperature increased through the summer, but

did not track daily variation in air temperature (Fig. 2c).

Water temperatures at most sites showed patterns

intermediate to the two extremes (Fig. 2b). Linear

regression slopes (i.e., TS) ranged from 0.10 to 0.82

(mean ¼ 0.39). Linear model y-intercepts ranged from

1.2 to 16 (mean ¼ 10.2) and were negatively related to

model slopes (Fig. 2d). Model fits of individual

regression models were also highly variable, with

adjusted R2 values ranging from 0.03 to 0.72 (median

¼ 0.41), and were positively correlated with model slope

(Fig. 2e).

Including the ADD as a predictor variable into

regression models improved model fit substantially

(Fig. 3a, b, c). Model fit improved for all 78 sites with

adjusted R2 values for the two-variable models ranging

from 0.43 to 0.99 (median ¼ 0.87; Fig. 3d). Average

improvement in adjusted R2 over the single-variable

(DMAT) model was 43.5% and ranged from 2.8% to

95.5% (Fig. 3e). Although model strength improved for

all sites, it was most pronounced for sites less sensitive to

DMAT (Fig. 3e).

The relative importance of the two predictor variables

(DMAT and ADD) varied substantially among sites

(Fig. 4a). Although both variables explained a signifi-

cant fraction of the total variation in daily water

temperature at most sites, ADD explained more

variation than DMAT at 67.9% (n ¼ 53) of the sites

(Fig. 4a). Inferred effects of groundwater on stream

temperature varied widely within and among watersheds

(Fig. 4b). Groundwater influence was relatively consis-

tent in some watersheds like Meadow Run, Piney River,

and Hughes River, whereas it varied substantially in

others such as Big Run, Paine Run, and Jeremy’s (Fig.

4b). However, on average, variation in the relative

influence of groundwater was greater within individual

watersheds (mean SD within watersheds ¼ 0.54) than

among them (SD among watershed means ¼ 0.08).

On average, estimates of GT for the 78 stream reaches

in 2012 derived from our two-variable regression models

showed an approximately 1:1 relationship with mean

annual air temperature of the preceding year (MAAT),

though there was considerable variation in estimates for

individual reaches around the trend line (Fig. 5a). For

instance, MAAT explained only 34% of the variance in

GT among reaches and the root mean squared error

estimate (RMSE) was 1.338C. Similar patterns were

observed for direct measurements of GT collected from

60 wells and springs in the park in 1997 (Fig. 5a).

Observed GT also showed an approximately 1:1 rela-

tionship with MAAT, and similar levels of among-reach

variance were observed (R2¼ 0.50, RMSE¼1.308C). The

relationships of both modeled and observed GT with

MAAT were similar to predictions of mean GT from the

simple regional model that assumes GT is approximately

MAAT plus 1.58C (Fig. 5a).

Estimates of future groundwater temperatures for the

78 reaches depended upon assumptions regarding the

sensitivity of groundwater temperature to long-term

changes in air temperature (TSGW). Modeled mean GT

for 2012 was 14.628C and was not predicted to change

with climate change under the assumption that TSGW¼ 0

(Fig. 5b). However, under more realistic assumptions of

TSGW (i.e., 0.66–1.00), mean GT increases substantially

under climate change, and differences in estimates of

mean GT among TSGW assumptions become increasingly

significant with larger simulated increases in climate

(SATI). For instance, with a 1.58C SATI, mean GT

increases to 15.618C with TSGW¼ 0.66 and 16.128C with

TSGW ¼ 1.00, but differences were not statistically

different (P . 0.05). However, with a 5.08C SATI, mean

GT increases to 17.928C for TSGW ¼ 0.66, and 19.628C

for TSGW ¼ 1.00, and differences were significantly

different among TSGW assumptions (Fig. 5b).

Increases in GT and assumptions regarding TSGW

would have obvious implications on stream TS. Under
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the assumption that TSGW ¼ 0, predicted stream TS

declines sharply with increasing groundwater influence,

with predictions ranging from 0.69 for reaches with no

groundwater influence (i.e., R2
ADD ¼ 0) to 0.08 for reaches

completely comprised of groundwater (i.e., R2
ADD¼1; Fig.

6a). In contrast, mean TS predictions are largely invariant

to groundwater influence at TSGW¼0.66 with predictions

ranging from 0.69 at R2
ADD ¼ 0 to 0.74 at R2

ADD ¼ 1 (Fig.

6b); and increase substantially at TSGW ¼ 1.00 with

predictions from 0.69 at R2
ADD ¼ 0 to 1.08 at R2

ADD ¼ 1

(Fig. 6c). In contrast, the relationship between ground-

water influence and TRBT was consistently negative,

irrespective of assumptions regarding TSGW, though the

magnitudes of expected changes vary considerably. For

instance, estimates of TRBT for reaches at R2
ADD¼ 0 range

between 1.258C and 1.58C for all three assumptions

regarding TSGW. However, at R2
ADD ¼ 1, estimates of

TRBT are 43.28C for TSGW ¼ 0 (Fig. 6d), 10.78C for

TSGW¼ 0.66 (Fig. 6e), and 7.48C for TSGW¼ 1 (Fig. 6f ).

Forecasting climate change effects on brook trout habitat

In 2012, observed water temperatures indicated

substantial among-site variation in MWAT. Observed

MWAT ranged from 14.78C to 23.78C and only two of

the 78 sites exceeded the 23.38C MWAT threshold for

brook trout habitat suitability (Fig. 7). The distribution

of MWAT predictions derived from our two-variable

reach regression models under the current climate

closely matched the distribution of observed MWAT

(Fig. 7). Reach-specific differences between observed

and modeled MWAT ranged from 0.0058C to 0.8258C

(mean difference ¼ 0.1608C), and predictions regarding

habitat suitability were only slightly different with all 78

regression models predicting suitable habitat (Fig. 7).

Predicted stream temperature and habitat suitability

changes were sensitive to TSGW assumptions, especially

at larger simulated increases in mean summer air

temperature (Fig. 7). Under the 1.58C SATI scenario,

variation in the ranges of predicted stream temperatures

FIG. 3. Comparisons of predictions of daily mean water temperatures (DMWT) for stream reaches in Shenandoah National
Park between regression models that used only daily mean air temperature (DMAT) as a predictor, and two-variable models that
used both DMAT and accumulated degree-days above mean summer air temperature (ADD) as predictors. Graphs (a), (b), and (c)
show observed and modeled MDWT for three example sites. Adjusted R2 values are shown for both single- and two-variable
models. Graph (d) compares the distribution of adjusted R2 values for all 78 sites for both models. Graph (e) shows the relationship
between the single-variable model slope and improvement in adjusted R2 observed from incorporating the additional ADD model
term into the model.
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and estimates of park-wide habitat suitability were

relatively consistent among models with varying TSGW

assumptions. Median MWAT ranged from 20.378C to

21.288C, and habitat suitability ranged from 94.87% to

92.31% (Fig. 7). However, differences in stream

temperature predictions among TSGW assumptions

became increasingly important at greater future air

temperature scenarios. At 5.08C SATI, median MWAT

ranged from 21.758C to 24.608C, and habitat suitability

ranged from 75.35% to 15.38% (Fig. 7).

Park-wide predictions of water temperature (MWAT)

and habitat suitability were also highly dependent on

spatial grain as defined by the three alternative modeling

approaches. As expected, all three approaches predicted

100% of sites in the park were thermally suitable in 2012

(Fig. 8), which compares favorably with observed data

(97.4% suitable, 76/78 sites). However, predicted future

habitat suitability for brook trout deviated sharply

among the three modeling approaches. Declines pre-

dicted from the reach models were less extreme than for

FIG. 4. Graph (a) shows the relative importance (partial R2 values) of the two model terms, daily mean air temperature
(DMAT) and accumulated degree-days above mean summer temperature (ADD), in predicting daily mean water temperature
(DMWT) for all 78 stream sites in Shenandoah National Park. Graph (b) shows the relative importance of groundwater within
each of the nine watersheds evaluated in the park.
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watershed or boundary modeling approaches. For

instance, under the 1.58C SATI with TSGW ¼ 1.0

scenario (i.e., maximum groundwater sensitivity to air

temperature), the reach models predicted 92.3% of

stream habitat in the study area would remain thermally

suitable for brook trout compared to 74.3% for the

watershed approach and only 39.7% for the boundary

approach (Fig. 8). For the 5.08C SATI scenario, the

reach models predicted over 15.4% of available stream

habitat would remain thermally suitable, whereas both

the watershed and boundary approaches predicted that

no thermally suitable habitat would remain in the study

area (Fig. 8).

We also detected important differences in the spatial

patterns of habitat loss among the three modeling

approaches. For this assessment, we controlled for

differences in the total amount of habitat loss by using

the respective modeling approaches to empirically derive

the SATI required to cause equivalent and moderate

declines in suitable habitat. We found that 20 of the 78

reaches (25.6%) would become thermally unsuitable

with a 2.678C increase for the reach approach, a 1.508C

increase for the watershed approach, and a 0.708C

increase for the boundary approach (Fig. 9). The results

indicate substantial differences in spatial patterns of

habitat decline within and among watersheds for the

three modeling approaches. Both the watershed and

boundary modeling approaches predicted that reaches

within watersheds would become progressively unsuit-

able in an upstream direction as air temperatures

increase over time (Fig. 9). In contrast, the reach

modeling approach predicted a more patchy spatial

distribution of habitat suitability within watersheds. For

instance, high-elevation reaches in Paine, Big Run,

Hughes and Jeremy’s watersheds were predicted to

become unsuitable prior to reaches lower in elevation

(Fig. 9). The three modeling approaches also predicted

different habitat decline patterns among watersheds.

The boundary model predicted more uniform patterns

of decline among watersheds because elevation ranges

were similar for most watersheds (Fig. 9). In contrast,

the watershed models predicted highly heterogeneous

patterns of decline, wherein whole watersheds are

predicted to be comprised of either largely suitable or

unsuitable habitats (Fig. 9). The reach models predicted

habitat losses among watersheds that were intermediate

to those of the watershed and boundary approaches.

DISCUSSION

Modeling stream thermal sensitivity

Our analysis of air–water temperature relationships

revealed important discontinuities in TS and DMWT

regimes. Simple linear regression models indicated that

thermal patterns in SNP ranged from highly sensitive

reaches where summer stream temperatures closely

tracked daily variation in air temperature to relatively

insensitive reaches where stream temperatures were

largely independent of short-term variation in air

FIG. 5. Groundwater temperatures (GT) measured and modeled in Shenandoah National Park. Graph (a) compares the
relationships between mean annual air temperature of the 12-month period leading up to temperature measurements (MAAT) and
(1) GT estimated from two-variable regression models for 78 stream reaches in 2012; (2) direct GT measurements collected from 44
springs and 16 wells in the park in 1997 by Plummer et al. (2000); and (3) predictions from a simple regional model (Meisner 1990a).
Graph (b) shows the influence of assumptions regarding long-term sensitivity of groundwater temperature (TSGW) on predictions
of mean GT (695% confidence limits) derived from our two-variable regression models under the three climate change scenarios:
1.58C, 3.08C, and 5.08C increases in summer mean air temperatures above those observed in 2012.
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temperature (Fig. 2). This is in contrast to larger streams

and rivers where TS is consistently high (linear

regression slopes .0.7; Stefan and Preud’homme 1993,

Pilgrim et al. 1998, Erickson and Stefan 2000, Bogan et

al. 2003) and stream temperature varies in a directional

fashion along gradients in elevation and latitude

(Arscott et al. 2001, Morrill et al. 2005, Caissie 2006,

Kelleher et al. 2012, Hilderbrand et al. 2014). Our

findings suggest that, unlike larger streams, where

climatic variables such as solar radiation are the

principle drivers of stream temperature (Webb et al.

2008), thermal patterns in forested headwater streams

are strongly influenced by hydrologic controls that vary

at smaller spatial scales (Constantz 1998, Story et al.

2003, Tague et al. 2007). Predicting stream temperature

in headwater streams and forecasting climate change

responses will therefore require an understanding of TS

at fine spatial grains, and the use of statistical models

that rely on air temperature alone and assume uniform

air–water temperature relationships over larger areas

may not be appropriate. Our results also demonstrate

that process-based analytical modeling approaches that

require detailed hydrometerological data may be im-

practical for assessing thermal patterns at ecologically

relevant spatial scales.

Regression-based statistical models that incorporate

the direct measurement of both local air and water

temperatures may provide an alternative approach for

assessing stream temperature dynamics that is conducive

to ecological assessments. This approach has become

increasingly popular due to the relatively low cost of

automated temperature loggers (Dunham et al. 2005,

Johnson et al. 2005) and has been used to characterize

TS patterns at fine spatial grains across broad land-

scapes (Kelleher et al. 2012, Mayer 2012, Hilderbrand et

al. 2014, Trumbo et al. 2014). However, recent research

has shown that these simple air–water regression models

derived from short-term (i.e., sub-annual) data sets may

provide limited value in terms of predicting future

stream temperatures in headwater areas for two reasons.

First, these simple models do not directly account for

non-climatic influences, such as groundwater inputs on

FIG. 6. Relationships between modeled stream thermal sensitivity (TS, top panels) and brook trout site thermal resistance
(TRBT, bottom panels) and groundwater influence (GWI) under three alternative assumptions of long-term groundwater sensitivity
(TSGW). Predictions for GWI ¼ 0 (streamflow completely comprised of surface runoff ) and GWI ¼ 1 (streamflow completely
comprised of groundwater) are shown for each graph.
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stream temperature (Arismendi et al. 2014, Gu et al.

2014). As a result, these models tend to underfit the

data, especially at sites with large groundwater contri-

butions. This underfitting is exemplified by the strong

positive correlation we observed between estimates of

model fit (adjusted R2) and model slopes (i.e., TS) of

simple air–water temperature regression models (Fig.

2e), and the observation that residuals generated from

air–water temperature regressions showed a biased

distribution for sites where model slopes and partial

R2 values were low (not shown, but can be inferred by

Fig. 3c). Secondly, these simple models do not account

for increases in GT that are likely to accompany

increasing climate over long time periods. Therefore,

directly using parameters derived from these short-term

models essentially assume that groundwater is not

sensitive to changing air temperature. This is not a

reasonable assumption, as GT has been shown to be

highly sensitive to changing air temperatures over

annual and longer time scales (Kurylyk et al. 2013,

Menberg et al. 2014). This may be particularly

important in landscapes where groundwater is stored

in relatively shallow aquifers such as SNP (Lynch 1987,

Plummer et al. 2001, Busenberg and Plummer 2014).

We show that intuitive adjustments to simple air–

water temperature models may allow for the estimation

of groundwater influence on stream temperatures, and

that these adjusted models can be used to incorporate

more realistic assumptions regarding the long-term

effects of increasing climate on GT (i.e., TSGW) and

consequent effects on stream TS. Specifically, we were

able to model the moderating effect of groundwater on

summer DMWT, and improve the model fit of short-

term regression models by incorporating the ADD term

into site regression models. This additional measure of

air temperature tracked the cumulative heating of

stream temperature through the summer that is associ-

ated with groundwater intrusion. Inclusion of the ADD

term improved estimates of model fit at all 78 stream

reaches studied, but improvements were most pro-

FIG. 7. Park-wide predictions of maximum weekly average temperatures (MWAT) and the proportion of thermally suitable
habitat under current (2012) and three future climate change scenarios. Predictions were derived from the reach-specific air–water
temperature regression models (N ¼ 78) using three alternative assumptions regarding long-term sensitivity of groundwater
temperature to changing air temperature (TSGW). Top panels (box plots) show the distribution of MWAT for the 78 stream
reaches, and bottom panels show the proportion of thermally suitable habitat in the park (i.e., MWAT , 23.38C). For box plots,
black lines within boxes depict medians, the upper and lower limits of the box define the 25th and 75th percentiles, and whiskers
define the 10th and 90th percentiles.
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nounced at sites that were less sensitive to air

temperature (Fig. 3e). Previous efforts to incorporate

stream hydrology variables into stream temperature

regression models have largely relied on direct measures

of streamflow gains and losses derived from remote

gaging stations. For instance, in an assessment of TS of

99 small streams in Maryland (USA), Hilderbrand et al.

(2014) found that incorporating mean daily discharge

derived from the nearest gaging station significantly

improved the predictive capacity of air–water tempera-

ture regressions, and improvements were greatest at sites

with low TS, as we observed in SNP. However, these

improvements were relatively modest (mean R2 in-

creased from 0.61 to 0.73). Using similar approaches

for 104 sites in the Pacific Northwest, Mayer (2012) also

found significant, but modest improvements (mean R2

increased from 0.61 to 0.68) in summer air–water

temperature regressions after including gage-derived

estimates of flow. In contrast, addition of the ADD

term into our regression models more than doubled the

median adjusted R2 values (0.41 to 0.87; Fig. 3d).

Others have used geostatistical modeling approaches

developed specifically for stream networks (Peterson and

Ver Hoef 2010) to account for spatial autocorrelation of

FIG. 8. Park-wide predictions of the proportion of ther-
mally suitable brook trout habitat predicted by the three
different modeling approaches (reach, watershed, and bound-
ary) under current and three simulated future climate scenarios.
The long-term sensitivity of groundwater temperature to air
temperature (i.e., TSGW) is assumed to be 1.0 for all three
modeling approaches.

FIG. 9. Comparisons of the predictions of the spatial patterns of thermal habitat loss among three modeling approaches: (a)
reach regression, (b) watershed regression, and (c) boundary model. Graphs show predictions of habitat suitability (open squares
show suitable habitat; solid squares show unsuitable habitat) for all stream reaches with each of the nine watersheds as a function of
position in the watershed (i.e., elevation [measured in meters]). We controlled for differences in the total amount of habitat loss by
using the respective modeling approaches to empirically derive the increase in mean summer temperature required to cause
equivalent and moderate declines in suitable habitat (i.e., 25.6% or 20 of 78 reaches as unsuitable).
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thermal patterns associated with flow connectivity.

These methods have been successfully applied to western

drainages and have been found to improve stream

temperature models by accounting for gradients in

stream size, elevation, and tributary effects on stream

temperature that change in a directional fashion along

stream corridors (Isaak et al. 2010, Jones et al. 2013).

However, we found that adding elevation or basin area

measures as additional predictor variables to simple air–

water temperature models did not significantly improve

predictions of current or future stream temperatures in

SNP (not shown). We hypothesize that processes

controlling TS vary over larger spatial scales in western

vs. eastern streams in North America. For instance,

snowmelt represents a considerable source of surface

flow during significant periods of the summer, poten-

tially overwhelming groundwater effects that may vary

over smaller spatial scales. Moreover, the effect of

snowmelt on stream temperature correlates with topo-

graphical features such as elevation and stream size that,

like air temperature, vary in an upstream to downstream

direction (Isaak et al. 2010, Hunsaker et al. 2012). Thus,

the mechanistic processes controlling stream tempera-

tures and TS may be different and operate over different

spatial scales in eastern and western North America.

Many GCMs predict a decrease in spring snowpack, a

transition from snow to rain, and reduced summer

streamflows across the western United States by 2040

(Ashfaq et al. 2013), and these predictions are supported

by recent observations (Mote et al. 2005, Hunsaker et al.

2012). If these trends continue, groundwater may

become an increasingly important driver of future

summer stream temperatures in western stream net-

works, and spatial patterns of thermal heterogeneity

may begin to resemble those in eastern stream networks

as shown here. We conclude from these patterns that the

ADD term provides a robust and reach-specific measure

of groundwater importance that does not rely on

assumptions that groundwater influence correlates with

regional gradients. Our approach is conceptually com-

parable to field methods that use heat flux measurements

as a tool to quantify surface–groundwater interactions

and define complex flow paths in headwater streams

(Anderson 2005, Constantz 2008, Leach and Moore

2011, Westhoff et al. 2011).

Our development of a predictor variable that tracks

groundwater influence (i.e., ADD) allowed for the

estimation of two related parameters, the proportion

of streamflow comprised of groundwater (inferred by

the R2
ADD) and actual groundwater temperature (GT,

computed as the y-intercept when R2
ADD ¼ 1) at each

stream reach. Our results suggest that stream tempera-

ture regimes described by summer DMWT patterns can

be largely explained by net atmospheric energy fluxes, as

inferred by R2
DMAT, and advective heat exchanges

associated with shallow groundwater inputs and hypo-

rheic flow, as inferred by R2
ADD. With only a few

exceptions, .80% of the variation in DMWT was

explained by these two predictor variables (Fig. 4a).

Although net solar radiation is frequently implicated as

the most important driver of stream temperatures

(Caissie 2006, Webb et al. 2008), our observation that

R2
ADD was greater than R2

DMAT at most sites (Fig. 4a)

suggests the pervasive influence of shallow groundwater

on headwater stream temperatures. This finding is

consistent with the results of intensive thermal and

hydrologic investigations conducted within selected

headwater stream reaches in other areas that have

shown that advective heat exchanges can have profound

effects on thermal sensitivity and stream temperatures in

small streams (Story et al. 2003, Johnson 2004,

Constantz 2008, Leach and Moore 2011). We also

showed that groundwater influence is more variable

within watersheds than among them (Fig. 4b), and this

has significant implications for the appropriate spatial

scale required for thermal condition assessments in

headwater stream networks.

Estimates of 2012 GT derived from our models were

consistent with direct GT measurements collected from

wells and spring sources in the park in 1997 (Plummer et

al. 2000), providing independent validation for our two-

variable reach models. Both modeled and measured

mean GT showed an approximately 1:1 relationship

with local MAAT and similar ranges of variation among

GT values for individual sites (Fig. 5a). These MAAT–

GT relationships also approximate predictions from a

simple regional model of GT that has been applied to

the range of eastern brook trout (Meisner 1990a). In

particular, the relationship from our modeled data

corresponded almost exactly with the regional model

(Fig. 5a). Relative to MAAT, observed GT measure-

ments were ;0.668C cooler on average than modeled

values. This difference may be due to the fact that GT

measurements were taken from wells and spring sources

that reflect subsurface GT, whereas modeled values

represent GT at the stream surface. Much of the

variation in GT not explained by MAAT (50% for

observed measurements; 66% for modeled estimates) is

likely due to site-specific variation in the depth of

groundwater sources, the distance from groundwater

sources, soil types, and other latent variables known to

influence GT (Kurylyk et al. 2013, Menberg et al. 2014).

We argue that these factors primarily represent physical

characteristics of individual stream reaches that are not

likely to change over ecologically relevant time scales,

and so our adjusted regression models should provide

reasonable estimates of future GT. However, we

acknowledge that these models ignore the effects of

changing precipitation patterns on groundwater influ-

ence that may occur under future climates, and which

would likely have strong effects on stream thermal

regimes (see Conclusions and limitations section below).

The strong (1:1) relationships observed between

MAAT and GT suggests that GT may be highly

sensitive to MAAT over even short time lags. In our

case, we used the 12-month period prior to temperature
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measurements to define MAAT, which suggests that GT

in SNP may be driven by relatively recent air

temperature patterns. Recent research on GT responses

to air temperature change suggests that, for shallow

aquifers, the lag time between air temperature warming

and associated increases in GT is usually less than five

years and often less than one year (Menberg et al. 2014).

Moreover, others have shown that GT at depths of as

much as 30 m may show significant annual variability

due to interannual changes in air temperature (e.g.,

Lesperance et al. 2010). In addition, investigators using

both detailed analytical heat budget models (Kurylyk et

al. 2014, Menberg et al. 2014) and statistical analyses of

GT samples (Kurylyk et al. 2013, Menberg et al. 2014)

have shown that the sensitivity of shallow GT to

changing air temperatures (i.e., TSGW) typically ranges

between 0.66 and 1.0 depending on depth, soils, and

other factors (Kurylyk et al. 2013, Menberg et al. 2014).

These patterns suggest that, although groundwater

dominated streams exhibit highly damped responses to

daily and seasonal variation in stream temperature, they

are highly sensitive to changes in air temperature that

occur over time periods commensurate with climate

change (e.g., years or decades).

Predictions of future GT derived from our adjusted

regression models were highly dependent on assump-

tions of TSGW (Fig. 5b). It necessarily follows then that

estimates of stream TS also depend upon TSGW. For

instance, assuming TSGW ¼ 0, stream TS declines

sharply with groundwater influence suggesting that

groundwater-dominated sites are less sensitive to air

temperature change. This is consistent with inferences of

stream TS typically drawn from the slope coefficients of

air–water temperature regression models derived from

annual or sub-annual data (Kelleher et al. 2012, Mayer

2012, Hilderbrand et al. 2014, Trumbo et al. 2014). Such

evaluations of stream TS based on this short-term

perspective have led some to suggest that groundwater-

dominated streams or reaches are more resistant to

climate change, and that they may offer refugia for fishes

and other biota in the face of an increasing climate

(Ficklin et al. 2014, Kløve et al. 2014). However, we

show that under more realistic assumptions of TSGW,

stream TS is shown to be equally (TSGW¼0.66), or even

more, sensitive (TSGW ¼ 1.00) to air temperature

increases than runoff-dominated reaches (Fig. 6, top

panels). These results highlight the importance of

incorporating a longer temporal perspective in assess-

ments of stream TS.

However, estimates of stream TS may not be sufficient

by themselves to predict ecological responses to climate

change. This is because aquatic species are typically

adapted to specific thermal regimes and their distribu-

tion is often defined by thermal thresholds (Eaton et al.

1995, Beitinger et al. 2000, Wehrly et al. 2007). Thus, the

rate at which stream temperatures are expected to

increase per unit increase in air temperature (i.e., stream

TS) represents only one important aspect of site

vulnerability. Current stream temperatures are also

important because the difference between current stream

temperature and any biologically meaningful thermal

tolerance threshold defines the extent a stream needs to

warm before becoming thermally unsuitable.

Our measure of thermal resistance (TRBT) is an

estimate of the increase in air temperature required to

render a site unsuitable to brook trout, and incorporates

measures of both stream TS and current stream

temperature, as well as the thermal threshold for brook

trout thermal habitat suitability. This measure is simple

to compute and although it is specific to brook trout

habitat suitability, the approach could be used to

estimate site thermal resistance for any biological

endpoint that can be defined by a threshold temperature.

However, because our estimate of TRBT was derived

from a linear model, it should only be interpreted as a

relative measure of site thermal resistance only. This is

because stream temperatures typically deviate from

linearity as air temperatures exceed about 258C (Moh-

seni and Stefan 1999, Bogan et al. 2006), which, in our

case, would be anything above about a 38C increase

above current climate (mean 2012 summer air temper-

ature ¼ 22.078C). Thus, these values almost certainly

represent pessimistic estimates of TRBT; nonlinear

models would yield higher estimates of TRBT.

Because stream TS depends on TSGW, estimates of

TRBT also vary with respect to TSGW. We show however

that, in contrast to stream TS, TRBT increases with the

relative contribution of groundwater (i.e., R2
ADD) irre-

spective of TSGW assumptions (Fig. 6, bottom panels).

These analyses indicate that higher thermal resistance of

groundwater-dominated sites has more to do with cooler

current stream temperatures than lower stream TS. Even

when we assume reaches dominated by groundwater will

warm more quickly than runoff-dominated reaches (i.e.,

higher TS; e.g., when TSGW ¼ 1.00), groundwater-

dominated streams would still require larger increases in

air temperature before becoming thermally unsuitable

(Fig. 6). These findings support the conclusion of Mayer

(2012) that accurate assessments of spatial variation in

current stream temperature regimes are just as impor-

tant as thermal sensitivity for assessing potential climate

change impacts. Trumbo et al. (2014) also considered

measures of current stream temperatures in addition to

stream TS to characterize thermal vulnerability. The

authors used TS derived from short-term air–water

regression models and a measure of current exposure to

temperatures above a critical thermal threshold (com-

parable to our MWAT threshold) to rank site vulner-

ability to climate change. However, their estimate of

stream TS did not account for TSGW, and their measure

of current exposure did not fully account for near-

threshold conditions. That is, sites that were exposed to

summer stream temperatures that were currently very

near, but not above, the thermal threshold were ranked

the same as sites where summer stream temperatures

were not anywhere near the thermal threshold. In
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contrast, our TRBT measure incorporates both TSGW

and current stream temperatures into a single continu-

ous value that describes the relative resistance of sites to

climate change.

Implications for brook trout habitat prediction

Our predictions for future brook trout thermal

habitat in SNP were sensitive to assumptions regarding

TSGW (Fig. 7). However, within the realistic range of

TSGW of 0.66 to 1.0, differences in future habitat

predictions were relatively minor except for the most

pessimistic climate scenario (i.e., 5.08C SATI) where

model predictions of remaining thermally suitable

habitat varied between 28.2% (TSGW ¼ 1.0) and 51.3%
(TSGW ¼ 0.66). We found no differences for the 1.58C-

increase scenario and only minor differences (,4%) for

the 3.08C-increase scenario when comparing TSGW

between 0.66 and 1.0 (Fig. 7). In contrast, we found

that estimates of suitable habitat based upon the

assumption of TSGW ¼ 0 were far too optimistic. For

instance, even under the 5.08C increase in mean summer

air temperature scenario, nearly 76% of available habitat

in the park is predicted to remain thermally suitable.

Moreover, differences in habitat predictions under

climate change associated with varying assumptions

regarding TSGW were relatively minor compared with

differences associated with measurement grain. Even

when using the most pessimistic assumptions regarding

TSGW (i.e., TSGW ¼ 1.0), climate change predictions

derived from our fine-grained reach models suggest that

forested headwater streams are substantially less vul-

nerable to climate warming than previously estimated

from large-scale boundary models that assume high and

spatially uniform thermal sensitivities across the region

(Fig. 8). For example, Eaton and Scheller (1996) used

downscaled climate change predictions (mean summer

increase ¼ 4.48C) and a uniform air–water temperature

relationship of 0.9 to project a 54.8% decline in brook

trout habitat nationwide. Clark et al. (2001) used a

uniform air–water temperature relationship of 0.7 to

estimate an 80% decline in trout habitat in the

Appalachians associated with a 1.5–2.58C increase in

air temperature. Likewise, Flebbe et al.’s (2006)

boundary model assumed a uniform air–water temper-

ature relationship of 1.0 and predicted that trout habitat

in the southern Appalachians would decline 21.6% with

a 1.58C increase in annual air temperature, and 97.3%
with a 5.08C increase. That model also predicted the

complete elimination of trout habitat in Virginia under a

5.08C in mean annual temperature scenario, which is

consistent with our boundary model predictions in SNP

where we noted complete elimination of suitable habitat

at a 5.08C increase in summer temperature (Fig. 8;

Flebbe et al. 2006). In contrast, our models that

incorporated reach-specific information on thermal

sensitivity predicted brook trout habitat in SNP to

decline only 5% with a 1.58C increase in summer mean

temperature, and 71% with an increase of 5.08C (Fig. 8).

These findings are particularly significant when we

consider that the baseline mean summer air tempera-

tures (i.e., 2012 study year) were relatively high: The

historical mean summer air temperature at the SNP

weather station in Luray, Virginia was 12.18C compared

with 13.58C for the 2012 study year. Moreover, only 3%
(n ¼ 2) of the observations over the 77-year period of

record exceeded the mean summer air temperature

observed in 2012. Thus, our simulated future climate

regimes and our modeled future water temperatures

probably represent a scenario of maximum potential

change in brook trout thermal habitat.

The watershed-scale models also overestimated hab-

itat loss, though not to the extent of the boundary

models (Fig. 8). In this case, the overestimate is more

related to a spatial bias in the sampling design (i.e.,

using models from the downstream extent or pour point

sites of the watershed to represent the entire watershed)

than measurement grain per se. In SNP, sites located

near the bottom of their watersheds were frequently

‘‘losing’’ reaches where streamflow is lost to the

underlying hyporheic zone (Lynch 1987). Thus, stream-

flow in these areas tends to be comprised largely of

surface runoff and are therefore warmer. We found no

examples of previous studies that used watershed-scale

air–water temperature regression models to predict

future stream temperatures or habitat loss from climate

change. However, researchers have used sampling

designs that rely on a single paired air–water tempera-

ture model, often developed from pour point sites near

streamflow gaging stations, to estimate stream TS and

rank watersheds in terms of vulnerability to climate

change (e.g., Kelleher et al. 2012, Trumbo et al. 2014).

The assumption here is that watershed models would

effectively represent elevation and other factors that

affect local variation in air temperature, and that other

important drivers of TS such as groundwater influence is

organized at the watershed scale. However, our analyses

indicate that there is as much variation in groundwater

influence within these small watersheds as among them

in SNP (Fig. 4b).

We also predicted large differences in the spatial

pattern of thermal habitat loss due to climate change

among the three modeling approaches. The boundary

and watershed modeling approaches predicted thermally

suitable habitat would decline in a downstream to

upstream direction in response to increasing air temper-

atures (Fig. 9). This finding is largely tautological, as

both of these larger grain modeling approaches assume

uniform thermal sensitivities within watersheds. There-

fore, air temperature is the only driver of stream

temperature that varies within watersheds in these

models, and air temperature is largely a function of

elevation for both modeling approaches. In contrast,

results inferred from our reach models indicate that

future habitat decline patterns will actually exhibit a

more patchy spatial distribution within watersheds (Fig.

9). This suggests that, despite the important and
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directional influence of air temperature on stream

temperatures, the fine-scale and nondirectional thermal

heterogeneity associated with groundwater has a strong

influence on both current and future stream tempera-

tures and habitat suitability. Kanno et al. (2013) reached

a similar conclusion in a study of thermal heterogeneity

in two brook trout streams in Connecticut, USA.

Our findings have important implications for brook

trout conservation and management. On the one hand,

fine-scale reach models show that brook trout habitat

losses expected from climate change are likely to be less

severe than previously estimated from large-scale

models. However, spatial patterns of habitat loss

predicted by our reach models suggest that a warming

climate will increase stream network fragmentation and

isolation of brook trout populations. At the watershed

scale, brook trout habitat is already highly fragmented

throughout much of the historical range due to

deforestation, water pollution, and the paucity of

connected cold-water mainstems (Flebbe et al. 1988,

Hudy et al. 2008, Stranko et al. 2008). Our results

suggest that additional fragmentation within headwater

streams may become increasingly important over time.

Brook trout are expected to move within and between

connected streams to access thermal refugia (Meisner

1990b, Petty et al. 2012) and recolonize areas after

natural disturbances (Roghair and Dolloff 2005).

Future thermal fragmentation therefore may compound

effects of existing natural and anthropogenic barriers to

fish movement, potentially decreasing population via-

bility (Morita and Yokota 2002, Letcher et al. 2007).

Conclusions and limitations

Our findings have important implications for predict-

ing stream thermal regimes and thermal habitat

suitability patterns under climate change. In particular,

we show that, with relatively simple adjustments, paired

air–water temperature relationships can be used to

discriminate the relative effects of groundwater and air

temperature on stream thermal regimes of forested

headwater streams. Moreover, these improved regres-

sion models allow for the incorporation of more realistic

assumptions regarding GT and TSGW into climate

change forecasts. Thus, we conclude that such regres-

sion-based models based on paired air–water tempera-

ture measurements may provide the most realistic

approach for assessing and forecasting stream thermal

regimes at ecologically relevant spatial scales.

The regression models we used are based upon several

key assumptions and have important limitations. First,

these models assume that precipitation patterns are

temporally static. That is, inferences derived from short-

term air–water temperature correlations are not merely

site specific, but site–year specific. Recent studies have

shown that coefficients and statistics derived from air–

water temperature regression models vary significantly

among years, at least in headwater areas (Kanno et al.

2013, Trumbo et al. 2014), and regression models

developed from one time period may not accurately

predict future stream temperatures (Arismendi et al.

2014). Such temporal variation should not be surprising

in light of the importance that hydrologic variables exert

on stream temperature and the larger interannual

variation in precipitation patterns for the region. The

magnitude and timing of precipitation would be

expected to affect the relative contribution of surface

runoff and groundwater to streamflow (Kurylyk et al.

2014), which, as we showed, is a primary driver of TS in

SNP streams. Total precipitation during the 2012 study

year was only slightly lower than the long-term average

measured within the park (97 cm compared with 101

cm). Therefore, assuming that total annual precipitation

represents a legitimate measure of precipitation patterns

related to stream hydrology, and that total precipitation

does not change in the future, then stream temperature

and TS predictions derived from our adjusted models

probably reflect realistic changes in average thermal

conditions that can be expected with climate change. In

some respects, this assumption may be reasonable, as

most GCMs predict no significant changes in mean

annual precipitation amount or the frequency of

extreme precipitation events (floods or droughts) for

the northeastern United States over the next few decades

(Kunkel et al. 2013). However, longer term predictions

indicate that mean annual precipitation will likely

change significantly, though, in contrast to temperature

predictions, there is little agreement among the GCMs in

even the likely direction of change (i.e., wetter or drier;

Ruosteenoja et al. 2003, Kunkel et al. 2013). Despite

considerable uncertainty regarding future precipitation

patterns, methods are needed that incorporate mean-

ingful precipitation measures into temperature regres-

sion models so that the sensitivity of stream temperature

to precipitation patterns can be evaluated. This will

require assessments of air–water temperature relation-

ships over long periods of time that include a range of

precipitation regimes. Currently, long-term stream

temperature data are sparse, especially for headwater

areas. Thus, improving our understanding of future

climate effects on stream ecosystems would benefit

greatly from a national stream temperature monitoring

network comparable to streamflow monitoring network

operated by the U.S. Geological Survey.

Second, we used a linear modeling approach, whereas

air–water temperature relationships typically exhibit

nonlinear patterns when examined over a wide range

in potential air temperatures. Specifically, stream

temperatures tend to asymptote at very low (i.e.,

�58C) and high (i.e., .258C) air temperatures (Mohseni
and Stefan 1999, Bogan et al. 2006). Nevertheless, for

many objectives related to climate change forecasting

(including our objective of estimating trout habitat

change), we believe linear models are appropriate

because the primary concern is predicted changes in

summer stream temperatures up to a relatively low

critical summer threshold (in our case, 23.38C MWAT),
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above which habitat becomes thermally unsuitable. This

assumption is probably true for assessing climate change

effects on most salmonids and other cold-water species.

However, other objectives will require a broader

perspective on stream temperature change. For instance,

Mohseni et al. (2003) showed that the distribution of a

large number of warm-water fish species are limited by

constraints imposed by lower winter temperature

thresholds. Therefore, comparable methods to directly

account for groundwater influence in nonlinear model-

ing approaches will be required.

Additional research is needed to characterize ground-

water sensitivity to changing climate across different

ecosystem types and at various spatial scales. In this

study, we assumed a wide range of TSGW to define the

boundaries of stream temperature and thermal habitat

predictions. However, this range was based on a very

small number of studies (Taylor and Stefan 2009,

Kurylyk et al. 2013, Menberg et al. 2014). We argue

that further increases in our fundamental understanding

of thermal drivers such as groundwater inputs and how

they vary in space and time will require field studies that

link the results of detailed heat budget analyses from

selected sites with air–water correlations measured

across the broader landscape.

Finally, our predictions regarding future brook trout

habitat are also predicated on important assumptions

regarding biological responses to increasing air temper-

atures. Perhaps most importantly is the assumption that

the thermal niche or thermal threshold defined under

current climate does not change under future climates.

Specifically, we assumed that MWAT of 23.38C is, and

will continue to be, an accurate measure of thermal

habitat suitability for brook trout. However, the effects

of chronic thermal stresses on thermal tolerance in fishes

are poorly understood, particularly in complex, fluctu-

ating thermal regimes (Bevelhimer and Bennett 2000).

On the one hand, the accumulated stress of increasing

stream temperature through time could reduce average

individual fitness thereby effectively reducing the ther-

mal threshold for habitat suitability. On the other hand,

chronic thermal stresses could increase tolerance

through either acclimation (Kelsch and Neill 1990) or

adaptation (Hansen et al. 2012, Crozier and Hutchings

2013). Despite the limitations, we believe the work

described here increases our understanding of thermal

processes at ecologically relevant spatial scales, and

provides a physical template on which ecological and

evolutionary questions can be tested in future research.
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