Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Molecular study of worldwide distribution and diversity of soil animals

Molecular study of worldwide distribution and diversity of soil animals

The global distribution of soil animals and the relationship of below-ground biodiversity to above-ground biodiversity are not well understood. We examined 17,516 environmental 18S rRNA gene sequences representing 20 phyla of soil animals sampled from 11 locations covering a range of biomes and latitudes around the world. No globally cosmopolitan taxa were found and only 14 of 2,259 operational taxonomic units (OTUs) found were common to four or more locations. Half of those were circumpolar and may reflect higher connectivity among circumpolar locations compared with other locations in the study. Even when OTU assembly criteria were relaxed to approximate the family taxo- nomic level, only 34 OTUs were common to four or more locations. A comparison of our diversity and community structure data to environmental factors suggests that below-ground animal diver- sity may be inversely related to above-ground biodiversity. Our data suggest that greater soil inorganic N and lower pH could explain the low below-ground biodiversity found at locations of high above-ground biodiversity. Our locations could also be characterized as being dominated by microarthropods or domi- nated by nematodes. Locations dominated by arthropods were primarily forests with lower soil pH, root biomass, mean annual temperature, low soil inorganic N and higher C:N, litter and moisture compared with nematode-dominated locations, which were mostly grasslands. Overall, our data indicate that small soil animals have distinct biogeographical distributions and provide unique evidence of the link between above-ground and below- ground biodiversity at a global scale. cosmopolitan species | endemism

Credits: PNAS | October 25, 2011 | vol. 108 | no. 43

Fair Use OK

DOWNLOAD FILE — PDF document, 300 kB (307,439 bytes)