Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File Annual Funding Opportunity USGS Climate Science Centers
Fiscal Year 2013 and 2014
Located in Resources / General Resources Holdings
File PDF document Annual plants change in size over a century of observations
Abstract Studies have documented changes in animal body size over the last century, but very little is known about changes in plant sizes, even though reduced plant productivity is potentially responsible for declines in size of other organisms. Here, I ask whether warming trends in the Great Basin have affected plant size by measuring specimens preserved on herbarium sheets collected between 1893 and 2011. I asked how maximum and minimum temperatures, precipitation, and the Pacific Decadal Oscillation (PDO) in the year of collection affected plant height, leaf size, and flower number, and asked whether changes in climate resulted in decreasing sizes for seven annual forbs. Species had contrasting responses to climate factors, and would not necessarily be expected to respond in parallel to climatic shifts. There were generally positive relationships between plant size and increased minimum and maximum temperatures, which would have been predicted to lead to small increases in plant sizes over the observation period. While one species increased in size and flower number over the observation period, five of the seven species decreased in plant height, four of these decreased in leaf size, and one species also decreased in flower production. One species showed no change. The mechanisms behind these size changes are unknown, and the limited data available on these species (germination timing, area of occupancy, relative abundance) did not explain why some species shrank while others grew or did not change in size over time. These results show that multiple annual forbs are decreasing in size, but that even within the same functional group, species may have contrasting responses to similar environmental stimuli. Changes in plant size could have cascading effects on other members of these communities, and differential responses to directional change may change the composition of plant communities over time.
Located in Resources / Climate Science Documents
File PDF document Another reason for concern: regional and global impacts on ecosystems for different levels of climate change
Between 1􏲒C and 2􏲒C increases in global mean temperatures most species, ecosystems and landscapes will be impacted and adaptive capacity will become limited. With the already ongoing high rate of climate change, the decline in biodiversity will therefore accelerate and simultaneously many ecosystem services will become less abundant.
Located in Resources / Climate Science Documents
File PDF document Anthropogenic environments exert variable selection on cranial capacity in mammals
It is thought that behaviourally flexible species will be able to cope with novel and rapidly changing environments associated with human activity. However, it is unclear whether such environments are selecting for increases in behavioural plasticity, and whether some species show more pronounced evolutionary changes in plasticity. To test whether anthropogenic environ- ments are selecting for increased behavioural plasticity within species, we measured variation in relative cranial capacity over time and space in 10 species of mammals. We predicted that urban populations would show greater cranial capacity than rural populations and that cranial capacity would increase over time in urban populations. Based on relevant theory, we also predicted that species capable of rapid population growth would show more pronounced evolutionary responses. We found that urban populations of two small mammal species had significantly greater cranial capacity than rural populations. In addition, species with higher fecundity showed more pronounced differentiation between urban and rural populations. Contrary to expectations, we found no increases in cranial capacity over time in urban populations—indeed, two species tended to have a decrease in cranial capacity over time in urban populations. Furthermore, rural populations of all insectivorous species measured showed significant increases in relative cranial capacity over time. Our results provide partial support for the hypothesis that urban environments select for increased behavioural plasticity, although this selection may be most pronounced early during the urban colonization process. Furthermore, these data also suggest that behavioural plasticity may be simultaneously favoured in rural environments, which are also changing because of human activity.
Located in Resources / Climate Science Documents
File PDF document Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration
Global warming is expected to intensify the global hydrological cycle1, with an increase of both evapotranspiration (EVT) and precipitation. Yet, the magnitude and spatial distribution of this global and annual mean response remains highly uncertain2. Better constraining land EVT in twenty-first-century climate scenarios is critical for predicting changes in surface climate, including heatwaves3 and droughts4, evaluating impacts on ecosystems and water resources5, and designing adaptation policies. Continental scale EVT changes may already be underway6,7, but have never been attributed to anthropogenic emissions of greenhouse gases and sulphate aerosols. Here we provide global gridded estimates of annual EVT and demonstrate that the latitudinal and decadal differentiation of recent EVT variations cannot be understood without invoking the anthropogenic radiative forcings. In the mid-latitudes, the emerging picture of enhanced EVT confirms the end of the dimming decades 8 and highlights the possible threat posed by increasing drought frequency to managing water resources and achieving food security in a changing climate.
Located in Resources / Climate Science Documents
Appalachian LCC as a Climate Refugia and Continental-scale Connectivity Corridor
Located in Cooperative / Our Plan / Section 1: Biodiversity and Conservation Challenges Across the Appalachian Region
Appalachian LCC Funds Four Landscape-level Projects
The Appalachian Landscape Conservation Cooperative (LCC) is investing in conservation projects across the Appalachian region that will support the sustainable management of resources and develop tools and information for conservation delivery.
Located in News & Events
Appalachian LCC part of Premiere Climate Education and Literacy Training Program
The inaugural Educator Climate and Conservation Colloquium (or EC3) brought together 50 teachers and school decision makers from across the nation to receive training on campus sustainability and wildlife conservation issues to better serve schools and communities.
Located in News & Events
Appalachian LCC Winter Newsletter
The 2014 Winter Newsletter highlights how the Appalachian LCC and its partners are addressing landscape issues and bringing together a community to find sustainable solutions.
Located in News & Events
File PDF document Approaching a state shift in Earth’s biosphere
Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale ‘tipping point’ highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.
Located in Resources / Climate Science Documents