Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Climate Science PDFs

Climate Science PDFs

Climate Science PDFs Collection
How global extinctions impact regional biodiversity in mammals
Phylogenetic diversity (PD) represents the evol- utionary history of a species assemblage and is a valuable measure of biodiversity because it cap- tures not only species richness but potentially also genetic and functional diversity. Preserving PD could be critical for maintaining the func- tional integrity of the world’s ecosystems, and species extinction will have a large impact on ecosystems in areas where the ecosystem cost per species extinction is high. Here, we show that impacts from global extinctions are linked to spatial location. Using a phylogeny of all mam- mals, we compare regional losses of PD against a model of random extinction. At regional scales, losses differ dramatically: several biodiversity hotspots in southern Asia and Amazonia will lose an unexpectedly large proportion of PD. Global analyses may therefore underestimate the impacts of extinction on ecosystem processes and function because they occur at finer spatial scales within the context of natural biogeography. Keywords: phylogenetic diversity; biodiversity; threatened species; mammals; extinction
Predicting ecosystem shifts requires new approaches that integrate the effects of climate change across entire systems
Most studies that forecast the ecological conse- quences of climate change target a single species and a single life stage. Depending on climatic impacts on other life stages and on interacting species, however, the results from simple exper- iments may not translate into accurate predictions of future ecological change. Research needs to move beyond simple experimental studies and environmental envelope projections for single species towards identifying where ecosystem change is likely to occur and the drivers for this change. For this to happen, we advocate research directions that (i) identify the critical species within the target ecosystem, and the life stage(s) most susceptible to changing conditions and (ii) the key interactions between these species and components of their broader ecosystem. A combined approach using macroecology, experimentally derived data and modelling that incorporates energy budgets in life cycle models may identify critical abiotic conditions that disproportionately alter important ecological processes under forecasted climates. Keywords: climate change; ocean acidification; global warming; species interactions; ecosystem shift; productivity and consumption
The bigger they come, the harder they fall: body size and prey abundance influence predator −prey ratios
Large carnivores are highly threatened, yet the processes underlying their population declines are still poorly understood and widely debated. We explored how body mass and prey abundance influence carnivore density using data on 199 populations obtained across multiple sites for 11 carnivore species. We found that relative decreases in prey abundance resulted in a five- to sixfold greater decrease in the largest carnivores compared with the smallest species. We discuss a number of possible causes for this inherent vulnerability, but also explore a possible mechanistic link between predator size, ener- getics and population processes. Our results have important implications for carnivore ecol- ogy and conservation, demonstrating that larger species are particularly vulnerable to anthropo- genic threats to their environment, especially those which have an adverse affect on the abundance of their prey. Keywords: carnivore ecology; predator–prey relationships; abundance scaling; climate change; metabolism
Creating Wetlands: Primary Succession, Water Quality Changes, and Self-Design over 15 Years
The succession of vegetation, soil development, water quality changes, and carbon and nitrogen dynamics are summarized in this article for a pair of 1-hectare flow-through-created riverine wetlands for their first 15 years. Wetland plant richness increased from 13 originally planted species to 116 species overall after 15 years, with most of the increase occurring in the first 5 years. The planted wetland had a higher plant community diversity index for 15 years, whereas the unplanted wetland was more productive. Wetland soils turned hydric within a few years; soil organic carbon doubled in 10 years and almost tripled in 15 years. Nutrient removal was similar in the two wetlands in most years, with a trend of decreased removal over 15 years for phosphorus. Denitrification accounted for a small percentage of the nitrogen reduction in the wetlands. The wetlands were effective carbon sinks with retention rates of 1800–2700 kilograms of carbon per hectare per year, higher than in comparable reference wetlands and more commonly studied boreal peatlands. Methane emission rates are low enough to create little concern that the wetlands are net sources of climate change radiative forcing. Planting appears to have influenced carbon accumulation, methane emissions, and macrophyte community diversity.
Biodiversity and the Feel-Good Factor: Understanding Associations between Self-Reported Human Well-being and Species Richness
Over half of the world’s human population lives in cities, and for many, urban greenspaces are the only places where they encounter biodiversity. This is of particular concern because there is growing evidence that human well-being is enhanced by exposure to nature. However, the specific qualities of greenspaces that offer the greatest benefits remain poorly understood. One possibility is that humans respond positively to increased levels of biodiversity. Here, we demonstrate the lack of a consistent relationship between actual plant, butterfly, and bird species richness and the psychological well-being of urban greenspace visitors. Instead, well-being shows a positive relationship with the richness that the greenspace users perceived to be present. One plausible explanation for this discrepancy, which we investigate, is that people generally have poor biodiversity- identification skills. The apparent importance of perceived species richness and the mismatch between reality and perception pose a serious challenge for aligning conservation and human well-being agendas.
Global Biodiversity Conservation and the Alleviation of Poverty
Poverty and biodiversity loss are two of the world’s dire challenges. Claims of conservation’s contribution to poverty alleviation, however, remain controversial. Here, we assess the flows of ecosystem services provided to people by priority habitats for terrestrial conservation, considering the global distributions of biodiversity, physical factors, and socioeconomic context. We estimate the value of these habitats to the poor, both through direct benefits and through payments for ecosystem services to those stewarding natural habitats. The global potential for biodiversity conservation to support poor communities is high: The top 25% of conservation priority areas could provide 56%–57% of benefits. The aggregate benefits are valued at three times the estimated opportunity costs and exceed $1 per person per day for 331 million of the world’s poorest people. Although trade-offs remain, these results show win–win synergies between conservation and poverty alleviation, indicate that effective financial mecha- nisms can enhance these synergies, and suggest biodiversity conservation as a fundamental component of sustainable economic development. Keywords: ecosystem service flows, poverty alleviation, biodiversity conservation priorities, natural capital, valuation
Contemporary Evolution of Reproductive Isolation and Phenotypic Divergence in Sympatry along a Migratory Divide
Understanding the influence of human-induced changes on the evolutionary trajectories of populations is a fundamental problem [1, 2]. The evolution of reproductive isolation in sympatry is rare, relying on strong selection along steep ecological gradients [3–7]. Improved wintering conditions owing to human activities promoted the recent establishment of a migratory divide in Central European blackcaps (Sylvia atricapilla) [8, 9]. Here, we show that differential migratory orientation facilitated reproductive isolation of sympatric populations within <30 generations. The genetic divergence in sympatry exceeds that of allopatric blackcaps separated by 800 km and is associated with diverse phenotypic divergence. Blackcaps migrating along the shorter northwestern route have rounder wings and narrower beaks and differ in beak and plumage color from sympatric south- west-migrating birds. We suggest that distinct wing and beak morphologies are ecomorphological adaptations resulting from divergent, multifarious selection regimes during migration. We hypothesize that restricted gene flow accelerates the evolution of adaptive phenotypic divergence toward the contrasting selection regimes. Similar adaptive processes can occur in more than 50 bird species that recently changed their migratory behavior [10, 11] or in species with low migratory connectivity. Our study thus illustrates how ecological changes can rapidly drive the contemporary evolution of ecotypes.
Bird population trends are linearly affected by climate change along species thermal ranges
Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.
Integrating multiple lines of evidence into historical biogeography hypothesis testing: a Bison bison case study
One of the grand goals of historical biogeography is to understand how and why species’ population sizes and distributions change over time. Multiple types of data drawn from disparate fields, combined into a single modelling framework, are necessary to document changes in a species’s demography and distribution, and to determine the drivers responsible for change. Yet truly integrated approaches are challenging and rarely performed. Here, we discuss a modelling framework that integrates spatio-temporal fossil data, ancient DNA, palaeoclimatological reconstruc- tions, bioclimatic envelope modelling and coalescence models in order to statistically test alternative hypotheses of demographic and potential distri- butional changes for the iconic American bison (Bison bison). Using different assumptions about the evolution of the bioclimatic niche, we generate hypothetical distributional and demographic histories of the species. We then test these demographic models by comparing the genetic signature pre- dicted by serial coalescence against sequence data derived from subfossils and modern populations. Our results supported demographic models that include both climate and human-associated drivers of population declines. This synthetic approach, integrating palaeoclimatology, bioclimatic envel- opes, serial coalescence, spatio-temporal fossil data and heterochronous DNA sequences, improves understanding of species’ historical biogeography by allowing consideration of both abiotic and biotic interactions at the population level
Grassland Vegetation Changes and Nocturnal Global Warming
Global minimum temperatures (TMIN) are increasing faster than maximum temperatures, but the ecological consequences of this are largely unexplored. Long-term data sets from the shortgrass steppe were used to identify corre- lations between TMIN and several vegetation variables. This ecosystem is po- tentially sensitive to increases in TMIN. Most notably, increased spring TMIN was correlated with decreased net primary production by the dominant C4 grass (Bouteloua gracilis) and with increased abundance and production by exotic and native C3 forbs. Reductions in B. gracilis may make this system more vulnerable to invasion by exotic species and less tolerant of drought and grazing.
Bergmann’s rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population
Ecological responses to on-going climate change are numerous, diverse, and taxonomically widespread. However, with one exception, the relative roles of phenotypic plasticity and microevolution as mechanisms in explaining these responses are largely unknown. Several recent studies have uncovered evidence for temporal declines in mean body sizes of birds and mammals, and these responses have been interpreted as evidence for microevolution in the context of Bergmann’s rule—an ecogeographic rule predicting an inverse correlation between temperature and mean body size in endothermic animals. We used a dataset of individually marked red-billed gulls (Larus novaehollandiae scopulinus) from New Zealand to document phenotypic and genetic changes in mean body mass over a 47-year (1958–2004) period. We found that, whereas the mean body mass had decreased over time as ambient temperatures increased, analyses of breeding values estimated with an ‘‘animal model’’ approach showed no evidence for any genetic change. These results indicate that the frequently observed climate-change-related responses in mean body size of animal populations might be due to phenotypic plasticity, rather than to genetic microevolutionary responses.
The Evolution and Distribution of Species Body Size
The distribution of species body size within taxonomic groups exhibits a heavy right tail extending over many orders of magnitude, where most species are much larger than the smallest species. We provide a simple model of cladogenetic diffusion over evolutionary time that omits explicit mechanisms for interspecific competition and other microevolutionary processes, yet fully explains the shape of this distribution. We estimate the model’s parameters from fossil data and find that it robustly reproduces the distribution of 4002 mammal species from the late Quaternary. The observed fit suggests that the asymmetric distribution arises from a fundamental trade-off between the short-term selective advantages (Cope’s rule) and long-term selective risks of increased species body size in the presence of a taxon-specific lower limit on body size
Thriving Arctic Bottom Dwellers Could Get Strangled by Warming
Many biologists hypothesize that climate change could hurt the Arctic benthos and the large creatures that live off it by wiping out ice (and hence ice algae), lengthening growing seasons for zooplankton, and giving warm- water species a foothold. “The way the system works now is very much in favor of the benthos,” says UAF polar ecologist Rolf Gradinger. “If the sys- tem changes, things could go downhill fast.”
Global evidence that deforestation amplifies flood risk and severity in the developing world
With the wide acceptance of forest-protection policies in the developing world comes a requirement for clear demonstrations of how deforestation may erode human well-being and economies. For centuries, it has been believed that forests provide protection against flooding. However, such claims have given rise to a heated polemic, and broad-scale quantitative evidence of the possible role of forests in flood protection has not been forthcoming. Using data collected from 1990 to 2000 from 56 developing countries, we show using generalized linear and mixed-effects models contrasted with information- theoretic measures of parsimony that flood frequency is negatively correlated with the amount of remaining natural forest and positively correlated with natural forest area loss (after controlling for rainfall, slope and degraded landscape area). The most parsimo- nious models accounted for over 65% of the variation in flood frequency, of which nearly 14% was due to forest cover variables alone. During the decade investigated, nearly 100 000 people were killed and 320 million people were displaced by floods, with total reported economic damages exceeding US$1151 billion. Extracted measures of flood severity (flood duration, people killed and displaced, and total damage) showed some weaker, albeit detectable correlations to natural forest cover and loss. Based on an arbitrary decrease in natural forest area of 10%, the model-averaged prediction of flood frequency increased between 4% and 28% among the countries modeled. Using the same hypothetical decline in natural forest area resulted in a 4–8% increase in total flood duration. These correlations suggest that global-scale patterns in mean forest trends across countries are meaningful with respect to flood dynamics. Unabated loss of forests may increase or exacerbate the number of flood-related disasters, negatively impact millions of poor people, and inflict trillions of dollars in damage in disadvantaged economies over the coming decades. This first global-scale empirical demonstration that forests are correlated with flood risk and severity in developing countries reinforces the imperative for large-scale forest protection to protect human welfare, and suggests that reforestation may help to reduce the frequency and severity of flood-related catastrophes. Keywords: conservation, damage, flooding events, forest loss, generalized linear mixed-effects models, generalized linear models, human displacement, projected costs, rainfall
Vegetation synchronously leans upslope as climate warms
Ecologists have long sought to understand how vegetation re- lates to climate (1, 2). Such knowledge underlies effective mitigation and adaptation to contempo- rary climate change (3). Warming tem- peratures associated with anthropogenic increases in greenhouse gases have led ecologists to predict that vegetation gra- dients will ‘‘march’’ up the hill as cli- mate envelopes shift with elevation, at a lag that scales with species’ generation times (4, 5). This prediction derives from the hypothesis that low-temperature constraints relax in association with warming climate, resulting in more fa- vorable conditions for establishment and growth at the leading edge of a species’ range (e.g., the upper elevation bound- ary on a mountain) (6, 7). Because of competition and change in plant-available water, the trailing edge is expected to track the leading edge (5) with the cen- tral tendency expected to concurrently ‘‘march’’ upslope. This type of response has important implications for predict- ing and mitigating climate change impacts, particularly for vegetation span- ning elevation gradients. If, rather than collectively moving with climate change, responses of dominant species assem- bled along an elevation gradient are highly individualistic, there is greater potential for more novel, nonanalog veg- etation assemblages.
Regional vegetation die-off in response to global-change-type drought
uture drought is projected to occur under warmer temperature conditions as climate change progresses, referred to here as global- change-type drought, yet quantitative assessments of the triggers and potential extent of drought-induced vegetation die-off remain pivotal uncertainties in assessing climate-change impacts. Of par- ticular concern is regional-scale mortality of overstory trees, which rapidly alters ecosystem type, associated ecosystem properties, and land surface conditions for decades. Here, we quantify region- al-scale vegetation die-off across southwestern North American woodlands in 2002–2003 in response to drought and associated bark beetle infestations. At an intensively studied site within the region, we quantified that after 15 months of depleted soil water content, >90% of the dominant, overstory tree species (Pinus edulis, a pin ̃on) died. The die-off was reflected in changes in a remotely sensed index of vegetation greenness (Normalized Dif- ference Vegetation Index), not only at the intensively studied site but also across the region, extending over 12,000 km2 or more; aerial and field surveys confirmed the general extent of the die-off. Notably, the recent drought was warmer than the previous sub- continental drought of the 1950s. The limited, available observa- tions suggest that die-off from the recent drought was more extensive than that from the previous drought, extending into wetter sites within the tree species’ distribution. Our results quantify a trigger leading to rapid, drought-induced die-off of overstory woody plants at subcontinental scale and highlight the potential for such die-off to be more severe and extensive for future global-change-type drought under warmer conditions. tree mortality 􏰆 vegetation dynamics 􏰆 climate change impacts 􏰆 woodlands 􏰆 Pinus edulis
Climate change and tropical biodiversity: a new focus
Considerable efforts are focused on the consequences of climate change for tropical rainforests. However, potentially the greatest threats to tropical biodiversity (synergistic interactions between climatic changes and human land use) remain understudied. Key concerns are that aridification could increase the accessibility of previously non-arable or remote lands, elevate fire impacts and exacerbate ecological effects of habitat disturbance. The growing climatic change literature often fails to appreciate that, in coming decades, climate–land use interac- tions might be at least as important as abiotic changes per se for the fate of tropical biodiversity. In this review, we argue that protected area expansion along key ecological gradients, regulation of human-lit fires, strategic forest–carbon financing and re-evaluations of agricultural and biofuel subsidies could ameliorate some of these synergistic threats.
Allometry of thermal variables in mammals: consequences of body size and phylogeny
A large number of analyses have examined how basal metabolic rate (BMR) is affected by body mass in mammals. By contrast, the critical ambient temperatures that define the thermo-neutral zone (TNZ), in which BMR is measured, have received much less attention. We provide the first phylogenetic analyses on scaling of lower and upper critical temperatures and the breadth of the TNZ in 204 mammal species from diverse orders. The phylogenetic signal of thermal variables was strong for all variables analysed. Most allometric relationships between thermal variables and body mass were significant and regressions using phylogenetic analyses fitted the data better than conventional regressions. Allometric exponents for all mammals were 0.19 for the lower critical temperature (expressed as body temperature - lower critical temperature), −0.027 for the upper critical temperature, and 0.17 for the breadth of TNZ. The small exponents for the breadth of the TNZ compared to the large exponents for BMR suggest that BMR per se affects the influence of body mass on TNZ only marginally. However, the breadth of the TNZ is also related to the apparent thermal conductance and it is therefore possible that BMR at different body masses is a function of both the heat exchange in the TNZ and that encountered below and above the TNZ to permit effective homeothermic thermoregulation. Keywords: allometry,lower critical temperature,mammals,marsupials,thermal neutral zone,upper critical temperature.
Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity
The study of elevational diversity gradients dates back to the foundation of biogeography. Although elevational patterns of plant and animal diversity have been studied for centuries, such patterns have not been reported for microorganisms and remain poorly understood. Here, in an effort to assess the generality of elevational diversity patterns, we examined soil bacterial and plant diversity along an elevation gradient. To gain insight into the forces that structure these patterns, we adopted a multifaceted approach to incorporate information about the structure, diversity, and spatial turnover of montane communities in a phylogenetic context. We found that observed patterns of plant and bacterial diversity were fundamentally different. While bacterial taxon richness and phylogenetic diversity decreased monotonically from the lowest to highest elevations, plants followed a unimodal pattern, with a peak in richness and phylogenetic diversity at mid-elevations. At all elevations bacterial communities had a tendency to be phylogenetically clustered, containing closely re- lated taxa. In contrast, plant communities did not exhibit a uniform phylogenetic structure across the gradient: they became more overdispersed with increasing elevation, containing distantly re- lated taxa. Finally, a metric of phylogenetic beta-diversity showed that bacterial lineages were not randomly distributed, but rather exhibited significant spatial structure across the gradient, whereas plant lineages did not exhibit a significant phylogenetic signal. Quantifying the influence of sample scale in intertaxonomic com- parisons remains a challenge. Nevertheless, our findings suggest that the forces structuring microorganism and macroorganism communities along elevational gradients differ. elevation gradient 􏰆 microbial ecology 􏰆 phylogenetic diversity 􏰆 macroecology 􏰆 biogeography
Gus Speth: Communicating environmental risks in an age of disinformation
Once described as "the consummate environmental insider," Gus Speth, co-founder of the Natural Resources Defense Council, says that green organizations, politicians, and the media are failing to address the root causes of climate change and other environmental problems. He points the finger at what he calls the Òeconomic growth imperativeÓÑthe incessant quest for wealth by corporations, governments, and individualsÑand argues for decou- pling job growth from economic growth. Speth envisions a post-growth society in which renewable energy plays an important role, but the emphasis is on improved efficiency: an energy-sipping, rather than an energy-guzzling, society. He reflects on the politicization and polarization that destroyed a national consensus for action on climate change. Speth urges environmental groups not to settle for meager progress in Washington, but rather to challenge the political system and to build broad coalitions with groups working for social justice and political reform. climate change, economic growth, energy efficiency, environmental groups, environmental law, post-growth society, renewable energy, social justice