Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents

Climate Science Documents

Forest disturbance across the conterminous United States from 1985–2012: The emerging dominance of forest decline

Evidence of shifting dominance among major forest disturbance agent classes regionally to globally has been emerging in the literature. For example, climate-related stress and secondary stressors on forests (e.g., insect and disease, fire) have dramatically increased since the turn of the century globally, while harvest rates in the western US and elsewhere have declined. For shifts to be quantified, accurate historical forest disturbance estimates are required as a baseline for examining current trends. We report annual disturbance rates (with uncertainties) in the aggregate and by major change causal agent class for the conterminous US and five geographic subregions between 1985 and 2012. Results are based on human interpretations of Landsat time series from a probability sample of 7200 plots (30 m) distributed throughout the study area. Forest disturbance information was recorded with a Landsat time series visualization and data collection tool that incorporates ancillary high-resolution data. National rates of disturbance varied between 1.5% and 4.5% of forest area per year, with trends being strongly affected by shifting dominance among specific disturbance agent influences at the regional scale. Throughout the time series, national harvest disturbance rates varied between one and two percent, and were largely a function of harvest in the more heavily forested regions of the US (Mountain West, Northeast, and Southeast). During the first part of the time series, national disturbance rates largely reflected trends in harvest disturbance. Beginning in the mid-90s, forest decline-related disturbances associated with diminishing forest health (e.g., physiological stress leading to tree canopy cover loss, increases in tree mortality above background levels), especially in the Mountain West and Lowland West regions of the US, increased dramatically. Consequently, national disturbance rates greatly increased by 2000, and remained high for much of the decade. Decline-related disturbance rates reached as high as 8% per year in the western regions during the early-2000s. Although low compared to harvest and decline, fire disturbance rates also increased in the early- to mid-2000s. We segmented annual decline-related disturbance rates to distinguish between newly impacted areas and areas undergoing gradual but consistent decline over multiple years. We also translated Landsat reflectance change into tree canopy cover change information for greater relevance to ecosystem modelers and forest managers, who can derive better understanding of forest-climate interactions and better adapt management strategies to changing climate regimes. Similar studies could be carried out for other countries where there are sufficient Landsat data and historic temporal snapshots of high-resolution imagery

Read More…

Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2C global warming is highly dangerous

There is evidence of ice melt, sea level rise to +5–9 m, and extreme storms in the prior interglacial period that was less than 1◦C warmer than today. Human-made climate forcing is stronger and more rapid than paleo forcings, but much can be learned by combining insights from paleoclimate, climate modeling, and on-going observations. We argue that ice sheets in contact with the ocean are vulnerable to non-linear disintegration in response to ocean warming, and we posit that ice sheet mass loss can be approximated by a doubling time up to sea level rise of at least several meters. Doubling times of 10, 20 or 40 years yield sea level rise of several meters in 50, 100 or 200 years. Paleoclimate data reveal that subsurface ocean warming causes ice shelf melt and ice sheet discharge. Our climate model exposes amplifying feedbacks in the Southern Ocean that slow Antarctic bottom water formation and increase ocean temperature near ice shelf grounding lines, while cooling the surface ocean and increasing sea ice cover and water column stability. Ocean surface cooling, in the North Atlantic as well as the Southern Ocean, increases tropospheric horizontal temperature gradients, eddy kinetic energy and baroclinicity, which drive more powerful storms. We focus attention on the Southern Ocean’s role in affecting atmospheric CO2 amount, which in turn is a tight control knob on global climate. The millennial (500–2000 year) time scale of deep ocean ventilation affects the time scale for natural CO2 change, thus the time scale for paleo global climate, ice sheet and sea level changes. This millennial carbon cycle time scale should not be misinterpreted as the ice sheet time scale for response to a rapid human-made climate forcing. Recent ice sheet melt rates have a doubling time near the lower end of the 10–40 year range. We conclude that 2 ◦C global warming above the preindustrial level, which would spur more ice shelf melt, is highly dangerous. Earth’s energy imbalance, which must be eliminated to stabilize climate, provides a crucial metric.

Read More…

Drought impact on forest growth and mortality in the southeast USA: an analysis using Forest Health and Monitoring data

Drought frequency and intensity has been predicted to increase under many climate change scenarios. It is therefore critical to understand the response of forests to potential climate change in an effort to mitigate adverse impacts. The purpose of this study was to explore the regional effects of different drought severities on tree growth and mortality. Specifically, we investigated changes in growth and mortality rates across the southeastern United States under various drought and stand conditions using 1991–2005 Forest Health and Monitoring (FHM) plot data from Alabama, Georgia, and Virginia. Drought effects were examined for three species groups (pines, oaks, and mesophytic species) using the Palmer drought severity index (PDSI) as an indicator of drought severity. Stand variables, including total basal area, total tree density, tree species richness, slope, and stand age, were used to account for drought effects under varying stand conditions. The pines and mesophytic species exhibited significant reductions in growth rate with increasing drought severity. However, no significant difference in growth rate was observed within the oak species group. Mean mortality rates within the no-drought class were significantly lower than those within the other three drought classes, among which no significant differences were found, for both pines and mesophytic species. Mean mortality rates were not significantly different among drought classes for oaks. Total basal area, total tree density, and stand age were negatively related to growth and positively related to mortality, which suggests that older and denser stands are more susceptible to drought damage. The effect of basal area on growth increased with drought severity for the oak and mesophytic species groups. Tree species richness was negatively related to mortality for the pine and mesophytic species groups, indicating that stands with more species suffer less mortality. Slope was positively related to mortality within the mesophytic species group, and its effect increased with drought severity, indicating a higher mortality on sites of greater slope during severe-drought conditions. Our findings indicate that pines and mesophytic species are sensitive to drought, while oaks are tolerant of drought. The observed differential growth and mortality rates among species groups may alter the species composition of southeastern U.S. forests if drought episodes become more frequent and/or intense due to climate change. The significant effects of stand conditions on drought responses observed in our study also suggest that forest management may be used as a tool to mitigate drought effects.

Read More…

Wilderness and biodiversity conservation

Human pressure threatens many species and ecosystems, so conservation efforts necessarily prioritize saving them. However, conservation should clearly be proactive wherever possible. In this article, we assess the biodiversity conservation value, and specifically the irreplaceability in terms of species endemism, of those of the planet’s ecosystems that remain intact. We find that 24 wilderness areas, all >1 million hectares, are >70% intact and have human densities of less than or equal to five people per km2. This wilderness covers 44% of all land but is inhabited by only 3% of people. Given this sparse population, wilderness conservation is cost-effective, especially if ecosystem service value is incorporated. Soberingly, however, most wilderness is not speciose: only 18% of plants and 10% of terrestrial vertebrates are endemic to individual wildernesses, the majority restricted to Amazonia, Congo, New Guinea, the Miombo–Mopane woodlands, and the North American deserts. Global conservation strategy must target these five wil- dernesses while continuing to prioritize threatened biodiversity hotspots.

Read More…

Estimating the global conservation status of more than 15,000 Amazonian tree species

Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the num- ber of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees through- out the tropics, and we predict that most of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century.

Read More…

Systemic trade risk of critical resources

Complex Systems: In the wake of the 2008 financial crisis, the role of strongly interconnected markets in causing systemic instability has been increasingly acknowledged. Trade networks of commodities are susceptible to cascades of supply shocks that increase systemic trade risks and pose a threat to geopolitical stability. We show that supply risk, scarcity, and price volatility of nonfuel mineral resources are intricately connected with the structure of the worldwide trade networks spanned by these resources. At the global level, we demonstrate that the scarcity of a resource is closely related to the susceptibility of the trade network with respect to cascading shocks. At the regional level, we find that, to some extent, region-specific price volatility and supply risk can be understood by centrality measures that capture systemic trade risk. The resources associated with the highest systemic trade risk indicators are often those that are produced as by- products of major metals. We identify significant strategic shortcomings in the management of systemic trade risk, in particular in the European Union.

Read More…

Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century

Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world’s ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world’s ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.

Read More…

Habitat fragmentation and its lasting impact on Earth’s ecosystems

We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest’s edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services.

Read More…

Planetary boundaries: Guiding human development on a changing planet

The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth System. Here, we revise and update the planetary boundaries framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth System into a new state should they be substantially and persistently transgressed.

Read More…

The declining uptake rate of atmospheric CO2 by land and ocean sinks

Through 1959–2012, an airborne fraction (AF) of 0.44 of total anthropogenic CO2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO2 sink rate (kS), the combined land–ocean CO2 sink flux per unit excess atmospheric CO2 above preindustrial levels. Here we show from observations that kS declined over 1959–2012 by a factor of about 1/3, implying that CO2 sinks increased more slowly than excess CO2. Us- ing a carbon–climate model, we attribute the decline in kS to four mechanisms: slower-than-exponential CO2 emissions growth (∼ 35 % of the trend), volcanic eruptions (∼ 25 %), sink responses to climate change (∼ 20 %), and nonlinear responses to increasing CO2, mainly oceanic (∼ 20 %). The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO2. Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in kS will occur under all plausible CO2 emission scenarios, the rate of decline varies between scenarios in non- intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause kS to decline more strongly with increasing mitigation, while intrinsic mechanisms cause kS to decline more strongly under high-emission, low-mitigation scenarios as the carbon–climate system is perturbed further from a near-linear regime.

Read More…

Scaling up from gardens: biodiversity conservation in urban environments

As urbanisation increases globally and the natural environment becomes increasingly fragmented, the importance of urban green spaces for biodiversity conservation grows. In many countries, private gardens are a major component of urban green space and can provide considerable biodiversity benefits. Gardens and adjacent habitats form interconnected networks and a landscape ecology framework is necessary to understand the relationship between the spatial configuration of garden patches and their constituent biodiversity. A scale-dependent tension is apparent in garden management, whereby the individual garden is much smaller than the unit of management needed to retain viable populations. To overcome this, here we suggest mechanisms for encouraging ‘wildlife-friendly’ management of collections of gardens across scales from the neighbourhood to the city.

Read More…

Conservation Easements and Climate Change

The current law of conservation easements does not recognize the full potential for carbon capture.

Read More…

CONSERVATION EASEMENTS AT THE CLIMATE CHANGE CROSSROADS

This article examines the conundrum that occurs when climate change leads to a landscape that conflicts with conservation easement terms. In facing the challenge of a disconnect between conservation easements and a changing world, there are two main tacks. First, conservationists can make conservation easements fit the changing landscape. Second, conservationists can change the landscape to fit the conservation easements. Both of these options present challenges and conflict with the essence of the conservation easement tool. A conservation easement that is too changeable endangers the perpetual protection that is the cornerstone of conservation easements. But, forcing the landscape to fit a conservation easement requires active management, something more often associated with fee-simple ownership. The solution to using conservation easements in a changing world lies somewhere between these two extremes, with the most important level of analysis being an assessment of when to use conservation easements.

Read More…

Conservation easements and global climate change

Land conservation is necessary to combat the ills of climate change and environmental degradation. The warming of the climate system is unequivocal. The Intergovernmental Panel on Climate Change (IPCC) recently released an updated report regarding the existence and impacts of global climate change. The report noted that the “resilience of many ecosystems is likely to be exceeded this century by an unprecedented combination of climate change, associated disturbances (e.g., flooding, drought, wildfire, insects, ocean acidification) and other global climate change drivers (e.g., land use change, pollution,fragmentation of natural systems, overexploitation of resources).”

Read More…

The Use of Conservation Easements in Adapting Conservation to a Changing Climate

Rally 2009: The National Land Conservation Conference Portland, Oregon

Read More…

Rethinking Private Land Conservation in the Face of Climate Change: A California Case Study & Future Options

This Article looks at how private land conservation may need to be rethought in the face of climate change, with a particular emphasis on the protection of biodiversity.

Read More…

Expanding options for habitat conservation outside protected areas in Kenya: The use of environmental easements

This paper examines wildlife conservation in Kenya on land outside protected areas. It presents a context within which environmental easements as a mechanism to conserve wildlife habitat outside protected areas can be considered based on property rights over land and the management of wildlife resources and their implication for habitat conservation. This paper also describes easements, the legal environment needed in Kenya for adopting environmental easements and makes specific legislative recommendations. A sample environmental easement, adapted for Kenyan circumstances from an American model, is presented. Also outlined are methods of valuing environmental easements, a critical link in establishing a solid framework and process for having an environmental easement granted.

Read More…

Warming caused by cumulative carbon emissions towards the trillionth tonne

We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO2), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide- induced warming of 2 6C above pre-industrial temperatures, with a 5–95% confidence interval of 1.3–3.9 6C.

Read More…

Creation of a Gilded Trap by the High Economic Value of the Maine Lobster Fishery

Unsustainable fishing simplifies food chains and, as with aquaculture, can result in reliance on a few economically valuable species. This lack of diversity may increase risks of ecological and economic disruptions. Centuries of intense fishing have extirpated most apex predators in the Gulf of Maine (United States and Canada), effectively creating an American lobster (Homarus americanus) monoculture. Over the past 20 years, the economic diversity of marine resources harvested in Maine has declined by almost 70%. Today, over 80% of the value of Maine’s fish and seafood landings is from highly abundant lobsters. Inflation- corrected income from lobsters in Maine has steadily increased by nearly 400% since 1985. Fisheries managers, policy makers, and fishers view this as a success. However, such lucrative monocultures increase the social and ecological consequences of future declines in lobsters. In southern New England, disease and stresses related to increases in ocean temperature resulted in more than a 70% decline in lobster abundance, prompting managers to propose closing that fishery. A similar collapse in Maine could fundamentally disrupt the social and economic foundation of its coast. We suggest the current success of Maine’s lobster fishery is a gilded trap. Gilded traps are a type of social trap in which collective actions resulting from economically attractive opportunities outweigh concerns over associated social and ecological risks or consequences. Large financial gain creates a strong reinforcing feedback that deepens the trap. Avoiding or escaping gilded traps requires managing for increased biological and economic diversity. This is difficult to do prior to a crisis while financial incentives for maintaining the status quo are large. The long-term challenge is to shift fisheries management away from single species toward integrated social-ecological approaches that diversify local ecosystems, societies, and economies.

Read More…

Social traps and environmental policy

I argue that all the environmental problems mentioned above (and many other social problems) belong to a category of phenomenon called social traps (Platt 1973). Like animal traps, social traps lead an unwary victim into the jaws of disaster with a tempting bit of bait, and, once the victim is caught, make escape extremely difficult. By studying the features real-world social traps have in common, and by experimenting with some simple laboratory examples of social traps, we can learn more about their general nature and the nature of effective escapes from them. A broad ecological perspective can be effective in understanding, avoiding, and escaping from some social traps, but it must be coupled with effective public policy. Effective policy involves a range of activities from education to regulation to correcting the misleading short-term incentives (the bait) that create traps in the first place.

Read More…

The 2 °C dream

Countries have pledged to limit global warming to 2 °C, and climate models say that is still possible. But only with heroic — and unlikely — efforts.

Read More…

A ‘perfect’ agreement in Paris is not essential

Success at the latest climate talks will be a recognition by the world’s nations that incremental change will not do the job, says Johan Rockström.

Read More…

After the talks

The real business of decarbonization begins after an agreement is signed at the Paris climate conference, argue David G. Victor and James P. Leape.

Read More…

Social Traps

A new area of study is the field that some of us are beginning to call social traps. The term refers to situations in society that contain traps formally like a fish trap, where men or whole societies get themselves started in some direction or some set of relationships that later prove to be unpleasant or lethal and that they see no easy way to back out of or to avoid.

Read More…

A SOCIAL TRAP ANALYSIS OF THE LOS ANGELES STORM DRAIN SYSTEM: A RATIONALE FOR INTERVENTIONS

The principles of analyzing social traps can be used to devise intervention strategies for the problems of toxic and solid waste dumping into the Los Angeles storm water drain system. Both problems readily fit into the social trap model. Intervention strategies center on 1) bringing long-term negative consequences to bear on behavioral choices of offenders, 2) increasing short-term positive consequences for correct behaviors, 3) decreasing short-term negative consequences that prevent correct behaviors, 4) increasing short-term negative consequences for environmentally destructive behaviors, 5) decreasing short-term positive consequences that support inappropriate behaviors, and 6) educating the public on the long-term positive consequences of appropriate behaviors.

Read More…

The Historical Dynamics of Social–Ecological Traps

Environmental degradation is a typical unintended outcome of collective human behavior. Hardin’s metaphor of the ‘‘tragedy of the commons’’ has become a conceived wisdom that captures the social dynamics leading to environmental degradation. Recently, ‘‘traps’’ has gained currency as an alternative concept to explain the rigidity of social and ecological processes that produce environmental degradation and livelihood impoverishment. The trap metaphor is, however, a great deal more complex compared to Hardin’s insight. This paper takes stock of studies using the trap metaphor. It argues that the concept includes time and history in the analysis, but only as background conditions and not as a factor of causality. From a historical–sociological perspective this is remarkable since social–ecological traps are clearly path-dependent processes, which are causally produced through a conjunction of events. To prove this point the paper conceptualizes social–ecological traps as a process instead of a condition, and systematically compares history and timing in one classic and three recent studies of social– ecological traps. Based on this comparison it concludes that conjunction of social and environmental events contributes profoundly to the production of trap processes. The paper further discusses the implications of this conclusion for policy intervention and outlines how future research might generalize insights from historical–sociological studies of traps.

Read More…

Ecosystem services: Foundations, opportunities, and challenges for the forest products sector

From the text: A social trap (7) is created when economic markets cannot efficiently or equitably deal with common pool resources (Hardin, 1968), which is often the case with ecosystem services.

Read More…

Asynchronous Online Foresight Panels: The Case of Wildfire Management

Framing the wildfire situation as a social trap emerged early in the Round 1 discussion and this topic was deemed important enough to merit its own discussion thread.

Read More…

Coupled catastrophes: sudden shifts cascade and hop among interdependent systems

From the Introduction: Sudden changes propagating among coupled systems pose a significant scientific challenge in many disciplines, yet we lack an adequate mathematical understanding of how local sudden changes spread [1]. The Earth’s biosphere, for example, appears to be approaching several planetary-scale sudden changes triggered by human activity, including species extinction, desertification and lake eutrophication, which spread from one spatial patch to another [1]. That spatial spread not only poses dangers but also opportunities for detecting early warning signs [2–4]. Socioeconomic systems have examples, too: booms and busts in business cycles in different economies appear to be synchronizing because of trade, financial and other linkages [5–8]. Poverty traps at multiple scales seem to be coupled [9]. Abrupt declines in an asset price can trigger sharp declines in confidence and fire sales of other assets, as occurred in the 2007–2008 global financial crisis [10]. Protests and social uprisings appear to spread contagiously among countries, with one protest seeming to inspire others via news and social media [11,12].

Read More…

Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010–2012

Background: Heat stress is a physiological response to extreme environmental heat such as heat waves. Heat stress can result in mortality in dairy cows when extreme heat is both rapidly changing and has a long duration. As a result of climate change, heat waves, which are defined as 3 days of temperatures of 32 °C or above, are an increasingly frequent extreme weather phenomenon in Southern Ontario. Heat waves are increasing the risk for on-farm dairy cow mortality in Southern Ontario. Heat stress indices (HSIs) are generally based on temperature and humidity and provide a relative measure of discomfort which can be used to predict increased risk of on-farm dairy cow mortality. In what follows, the heat stress distribution was described over space and presented with maps. Similarly, on-farm mortality was described and mapped. The goal of this study was to demonstrate that heat waves and related HSI increases during 2010–2012 were associated with increased on-farm dairy cow mortality in Southern Ontario. Mortality records and farm locations for all farms registered in the CanWest Dairy Herd Improvement Program in Southern Ontario were retrieved for 3 heat waves and 6 three-day control periods from 2010 to 2012. A random sample of controls (2:1) was taken from the data set to create a risk-based hybrid design. On-farm heat stress was estimated using data from 37 weather stations and subsequently interpolated across Southern Ontario by geostatistical kriging. A Poisson regression model was applied to assess the on-farm mortality in relation to varying levels of the HSI. Results: For every one unit increase in HSI the on-farm mortality rate across Southern Ontario increases by 1.03 times (CI95% (IRR) = (1.025,1.035); p = ≤ 0.001). With a typical 8.6 unit increase in HSI from a control period to a heat wave, mortality rates are predicted to increase by 1.27 times. Conclusions: Southern Ontario was affected by heat waves, as demonstrated by high levels of heat stress and increased on-farm mortality. Farmers should be aware of these risks, and informed of appropriate methods to mitigate such risks.

Read More…

DATA MINING TO ESTIMATE BROILER MORTALITY WHEN EXPOSED TO HEAT WAVE

Heat waves usually result in losses of animal production since they are exposed to thermal stress inducing an increase in mortality and consequent economical losses. Animal science and meteorological databases from the last years contain enough data in the poultry production business to allow the modeling of mortality losses due to heat wave incidence. This research analyzes a database of broiler production associated to climatic data, using data mining techniques such as attribute selection and data classification (decision tree) to model the impact of heat wave incidence on broiler mortality. The temperature and humidity index (THI) was used for screening environmental data. The data mining techniques allowed the development of three comprehensible models for estimating specifically high mortality during broiler production. Two models yielded a classification accuracy of 89.3% by using Principal Component Analysis (PCA) and Wrapper feature selection approaches. Both models obtained a class precision of 0.83 for classifying high mortality. When the feature selection was made by the domain experts, the model accuracy reached 85.7%, while the class precision of high mortality was 0.76. Meteorological data and the calculated THI from meteorological stations were helpful to select the range of harmful environmental conditions for broilers 29 and 42 days old. The data mining techniques were useful for building animal production models.

Read More…

Divergent phenological response to hydroclimate variability in forested mountain watersheds

Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins’ Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns are easily observed over wide areas and may be used as a unique diagnostic for sources of ecosystem vulnerability and sensitivity to hydroclimate change.

Read More…

Herb layer extinction debt in highly fragmented temperate forests – Completely paid after 160 years?

The time-delayed extinction of plant species following habitat fragmentation is a well-known phenomenon in ecology. The length of the relaxation time until this ‘extinction debt’ is paid (i.e., until extinctions cease) depends on the ecosystem, species group and extent of fragmentation. Studies of grassland ecosystems have revealed that plant extirpations after fragmentation can occur rapidly when the degree of frag- mentation is high. Studies of extinction debt in highly fragmented forests, however, are lacking. In this study, we evaluated the existence of an extinction debt in the Prignitz, Brandenburg, Germany, where 94% of the semi-natural forests have vanished since 1780. We surveyed the herb-layer species of 104 forest patches and fitted species richness as a function of the historical and present-day patch configurations. Models including the present-day habitat area and connectivity explained the present day species richness better than models including historical patch-configuration variables. There was no significant effect of the historical habitat area on the present day species richness. However, the effect of historical patch connectivity on the richness of forest specialists with short-distance dispersal potential was significant when excluding present-day habitat area from the models and habitat quality and heterogeneity were used as covariables. The extinction debt has largely been paid after approximately 160 years of relaxation time which contrasts with previous studies of temperate forests that have found extinction debts persisting 120–225 years after fragmentation. We demonstrate that extinction debts in temperate forests may be paid off more rapidly if the degree of fragmentation is high.

Read More…

Regional variability in extinction thresholds for forest birds in the north-eastern United States: an examination of potential drivers using long-term breeding bird atlas datasets

Main conclusions: Extinction threshold estimates varied tremendously across species and landscapes. Thus, habitat thresholds are difficult to generalize as they depend on many factors beyond landscape fragmentation and habitat availability (e.g. landscape characteristics such as matrix quality). Our findings highlight the need to avoid oversimplification and generalization of habitat thresholds, especially as they might prove counterproductive to conservation efforts. Instead, we propose that we evaluate thresholds for individual species – preferably using species-centred habitat definitions in threshold modelling – to derive generalities for ecological and conservation applications.

Read More…

The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century

The distribution and future fate of ectothermic organisms in a warming world will be dictated by thermal-scapes across landscapes. That is particularly true for stream fishes and cold-water species like trout, salmon, and char that are already constrained to high elevations and latitudes. The extreme climates in those environments also preclude invasions by most non-native species, so identifying especially cold habitats capable of absorbing future climate change while still supporting native populations would highlight important refugia. By coupling crowd-sourced biological datasets with high-resolution stream temperature scenarios, we delineate network refugia across >250 000 stream km in the Northern Rocky Mountains for two native salmonids—bull trout (BT) and cutthroat trout (CT). Under both moderate and extreme climate change scenarios, refugia with high probabilities of trout population occupancy (>0.9) were predicted to exist (33–68 BT refugia; 917–1425 CT refugia). Most refugia are on public lands (>90%) where few currently have protected status in National Parks or Wilderness Areas (<15%). Forecasts of refuge locations could enable protection of key watersheds and provide a foundation for climate smart planning of conservation networks. Using cold water as a ‘climate shield’ is generalizable to other species and geographic areas because it has a strong physiological basis, relies on nationally available geospatial data, and mines existing biological datasets. Importantly, the approach creates a framework to integrate data contributed by many individuals and resource agencies, and a process that strengthens the collaborative and social networks needed to preserve many cold-water fish populations through the 21st century.

Read More…

Sustainable Development under Population Pressure: Lessons from Developed Land Consumption in the Conterminous U.S.

Population growth will result in a significant anthropogenic environmental change worldwide through increases in developed land (DL) consumption. DL consumption is an important environmental and socioeconomic process affecting humans and ecosystems. Attention has been given to DL modeling inside highly populated cities. However, modeling DL consump- tion should expand to non-metropolitan areas where arguably the environmental consequences are more significant. Here, we study all counties within the conterminous U.S. and based on satellite-derived product (National Land Cover Dataset 2001) we calculate the associated DL for each county. By using county population data from the 2000 census we present a comparative study on DL consumption and we propose a model linking population with expected DL consumption. Results indicate distinct geographic patterns of comparatively low and high consuming counties moving from east to west. We also demonstrate that the relationship of DL consumption with population is mostly linear, altering the notion that expected population growth will have lower DL consumption if added in counties with larger population. Added DL consumption is independent of a county’s starting population and only dependent on whether the county belongs to a Metropolitan Statistical Area (MSA). In the overlapping MSA and non-MSA population range there is also a constant DL efficiency gain of approximately 20km2 for a given population for MSA counties which suggests that transitioning from rural to urban counties has significantly higher benefits in lower populations. In addition, we analyze the socioeconomic composition of counties with extremely high or low DL consumption. High DL consumption counties have statistically lower Black/ African American population, higher poverty rate and lower income per capita than average in both NMSA and MSA counties. Our analysis offers a baseline to investigate further land consumption strategies in anticipation of growing population pressures.

Read More…

The future of farming: return to roots?

Large scale farming would be more sustainable if major crop plants lived for years and built deep root systems.

Read More…

Projected increase in lightning strikes in the United States due to global warming

Lightning plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on lightning rates is poorly constrained. Here we propose that the lightning flash rate is proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation explains 77% of the variance in the time series of total cloud-to- ground lightning flashes over the contiguous United States (CONUS). Storms convert CAPE times precipitated water mass to discharged lightning energy with an efficiency of 1%. When this proxy is applied to 11 climate models, CONUS lightning strikes are predictedto increase 12 +_ 5% per degree Celsius of global warming and about 50% over this century

Read More…

Seasonal weather patterns drive population vital rates and persistence in a stream fish

Here, we investigated effects of seasonal air temperature and precipitation (fall, winter, and spring) on survival and recruitment of brook trout (Salvelinus fontinalis) at a broad spatial scale using a novel stage-structured population model. The data were a 15-year record of brook trout abundance from 72 sites distributed across a 170-km-long mountain range in Shenandoah National Park, Virginia, USA. Population vital rates responded differently to weather and site-specific conditions. Specifically, young-of-year survival was most strongly affected by spring temperature, adult survival by elevation and per-capita recruitment by winter precipitation. Low fall precipitation and high winter precipitation, the latter of which is predicted to increase under climate change for the study region, had the strongest negative effects on trout populations. Simulations show that trout abundance could be greatly reduced under constant high winter precipitation, consistent with the expected effects of gravel-scouring flows on eggs and newly hatched individuals. However, high-elevation sites would be less vulnerable to local extinction because they supported higher adult survival. Furthermore, the majority of brook trout populations are projected to persist if high winter precipitation occurs only intermittently (≤3 of 5 years) due to density-dependent recruitment. Variable drivers of vital rates should be commonly found in animal populations characterized by ontogenetic changes in habitat, and such stage-structured effects may increase population persistence to changing climate by not affecting all life stages simultaneously. Yet, our results also demonstrate that weather patterns during seemingly less consequential seasons (e.g., winter precipitation) can have major impacts on animal population dynamics.

Read More…

Diffusion into new markets: evolving customer segments in the solar photovoltaics market

The US residential solar market is growing quickly, and as solar adoption diffuses into new populations, later adopters may differ significantly from earlier ones. Using a unique household-level survey dataset including 1234 adopters and 790 non-adopters from San Diego County, California, we explore differences in attitudinal and socio-economic factors for three groups: (i) adopters and non- adopters; (ii) early and more recent adopters; (iii) consumers adopting via buying or leasing. Our results suggest that adopters overall have higher incomes, are more educated, live in larger homes, and expect to stay in their homes for longer than their non-adopting peers. They also differ in their expectations of electricity retail rate changes and the impact solar could have on their home resale value. When examining differences between early and more recent adopters, we find that recent adopters are more representative of general homeowners and more politically moderate. They are also increasingly installing solar to protect against future electricity price increases and to lower electricity costs as opposed to adopting strictly for environmental reasons. Furthermore, more recent adopters differ significantly from earlier adopters in the situations that prompted them to adopt. The findings demonstrate how solar markets are evolving, reflecting changes in the underlying drivers of consumer adoption as well as innovative solar marketing strategies.

Read More…

Climate Science PDFs

Climate Science PDFs Collection

Read More…

Ecosystems Vulnerability Datasets

Ecosystems Vulnerability Datasets

Table displaying name, dataset link, topic name, topic categories, comments/links, and list of tags.

Read More…

National Conservation Training Center Training Announcement: Decision Analysis for Climate Change - ALC3196

National Conservation Training Center Training Announcement: Decision Analysis for Climate Change - ALC3196

Natural resource managers are increasingly tasked with understanding climate change impacts and using this knowledge in making decisions. Yet the uncertainty inherent in evaluating climate impacts often impedes action. This 10‐ week online course provides participants with skills to address climate change impacts in making decisions about natural resource management.

Read More…

Decision Analysis for Climate Change (Online) – ALC3196 Class Agenda

Decision Analysis for Climate Change (Online) – ALC3196 Class Agenda

January 15 ‐ March 17th, 2015. Total Contact Time: 28‐34 hours

Read More…