Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Drought impact on forest growth and mortality in the southeast USA: an analysis using Forest Health and Monitoring data

Drought impact on forest growth and mortality in the southeast USA: an analysis using Forest Health and Monitoring data

Drought frequency and intensity has been predicted to increase under many climate change scenarios. It is therefore critical to understand the response of forests to potential climate change in an effort to mitigate adverse impacts. The purpose of this study was to explore the regional effects of different drought severities on tree growth and mortality. Specifically, we investigated changes in growth and mortality rates across the southeastern United States under various drought and stand conditions using 1991–2005 Forest Health and Monitoring (FHM) plot data from Alabama, Georgia, and Virginia. Drought effects were examined for three species groups (pines, oaks, and mesophytic species) using the Palmer drought severity index (PDSI) as an indicator of drought severity. Stand variables, including total basal area, total tree density, tree species richness, slope, and stand age, were used to account for drought effects under varying stand conditions. The pines and mesophytic species exhibited significant reductions in growth rate with increasing drought severity. However, no significant difference in growth rate was observed within the oak species group. Mean mortality rates within the no-drought class were significantly lower than those within the other three drought classes, among which no significant differences were found, for both pines and mesophytic species. Mean mortality rates were not significantly different among drought classes for oaks. Total basal area, total tree density, and stand age were negatively related to growth and positively related to mortality, which suggests that older and denser stands are more susceptible to drought damage. The effect of basal area on growth increased with drought severity for the oak and mesophytic species groups. Tree species richness was negatively related to mortality for the pine and mesophytic species groups, indicating that stands with more species suffer less mortality. Slope was positively related to mortality within the mesophytic species group, and its effect increased with drought severity, indicating a higher mortality on sites of greater slope during severe-drought conditions. Our findings indicate that pines and mesophytic species are sensitive to drought, while oaks are tolerant of drought. The observed differential growth and mortality rates among species groups may alter the species composition of southeastern U.S. forests if drought episodes become more frequent and/or intense due to climate change. The significant effects of stand conditions on drought responses observed in our study also suggest that forest management may be used as a tool to mitigate drought effects.

Publication Date: 2009

Credits: Ecological Applications, 19(3), 2009, pp. 699–708

Fair Use OK

DOWNLOAD FILE — PDF document, 958 kB (981,970 bytes)