Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming

Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming

Historical evidence shows that atmospheric greenhouse gas (GhG) concentrations increase during periods of warming, implying a positive feedback to future climate change. We quantified this feedback for CO2 and CH4 by combining the mathematics of feedback with empirical icecore information and general circulation model (GCM) climate sensitivity, finding that the warming of 1.5 –4.5C associated with anthropogenic doubling of CO2 is amplified to 1.6– 6.0C warming, with the uncertainty range deriving from GCM simulations and paleo temperature records. Thus, anthropogenic emissions result in higher final GhG concentrations, and therefore more warming, than would be predicted in the absence of this feedback. Moreover, a symmetrical uncertainty in any component of feedback, whether positive or negative, produces an asymmetrical distribution of expected temperatures skewed toward higher temperature. For both reasons, the omission of key positive feedbacks and asymmetrical uncertainty from feedbacks, it is likely that the future will be hotter than we think. Citation: Torn, M. S., and J. Harte (2006), Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming.

Publication Date: 2006

DOWNLOAD FILE — PDF document, 176 kB (181,196 bytes)