Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change

Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change

The United States produces 41% of the world’s corn and 38% of the world’s soybeans. These crops comprise two of the four largest sources of caloric energy produced and are thus critical for world food supply. We pair a panel of county-level yields for these two crops, plus cotton (a warmer-weather crop), with a new fine-scale weather dataset that incorporates the whole distribution of tem- peratures within each day and across all days in the growing season. We find that yields increase with temperature up to 29° C for corn, 30° C for soybeans, and 32° C for cotton but that tem- peratures above these thresholds are very harmful. The slope of the decline above the optimum is significantly steeper than the incline below it. The same nonlinear and asymmetric relationship is found when we isolate either time-series or cross-sectional variations in temperatures and yields. This suggests limited his- torical adaptation of seed varieties or management practices to warmer temperatures because the cross-section includes farmers’ adaptations to warmer climates and the time-series does not. Holding current growing regions fixed, area-weighted average yields are predicted to decrease by 30 – 46% before the end of the century under the slowest (B1) warming scenario and decrease by 63–82% under the most rapid warming scenario (A1FI) under the Hadley III model. agriculture 􏰀 panel analysis 􏰀 time series 􏰀 cross section 􏰀 farmer adaptation

Credits: PNAS www.pnas.org􏰁cgi􏰁doi􏰁10.1073􏰁pnas.0906865106

Fair Use OK

DOWNLOAD FILE — PDF document, 287 kB (294,194 bytes)