Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Slow Recovery from Perturbations as a Generic Indicator of a Nearby Catastrophic Shift

Slow Recovery from Perturbations as a Generic Indicator of a Nearby Catastrophic Shift

The size of the basin of attraction in ecosystems with alternative stable states is often referred to as “ecological resilience.” Ecosystems with a low ecological resilience may easily be tipped into an alternative basin of attraction by a stochastic event. Unfortunately, it is very difficult to measure ecological resilience in practice. Here we show that the rate of recovery from small perturbations (some- times called “engineering resilience”) is a remarkably good indicator of ecological resilience. Such recovery rates decrease as a catastrophic regime shift is approached, a phenomenon known in physics as “crit- ical slowing down.” We demonstrate the robust occurrence of critical slowing down in six ecological models and outline a possible ex- perimental approach to quantify differences in recovery rates. In all the models we analyzed, critical slowing down becomes apparent quite far from a threshold point, suggesting that it may indeed be of practical use as an early warning signal. Despite the fact that critical slowing down could also indicate other critical transitions, such as a stable system becoming oscillatory, the robustness of the phenom- enon makes it a promising indicator of loss of resilience and the risk of upcoming regime shifts in a system. Keywords: alternative stable states, catastrophic bifurcations, critical slowing down, early warning signals, resilience, return time.

Credits: the american naturalist june 2007

Fair Use OK

DOWNLOAD FILE — PDF document, 414 kB (424,138 bytes)