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Abstract: It is widely held that humankind’s destructive
tendencies when exploiting natural resources leads to
irreparable harm to the environment. Yet, this thinking
runs counter to evidence that many ecological systems
damaged by severe natural environmental disturbances
(e.g., hurricanes) can restore themselves via processes of
natural recovery. The emerging field of restoration
ecology is capitalizing on the natural restorative tenden-
cies of ecological systems to build a science of repairing
the harm inflicted by humans on natural environment.
Evidence for this, for example, comes from a new meta-
analysis of 124 studies that synthesizes recovery of
impacted wetlands worldwide. While it may take up to
two human generations to see full recovery, there is
promise, given human will, to restore many damaged
wetlands worldwide.

In a now classic essay entitled Round River [1], Aldo Leopold—

the father of modern environmental ethics—lamented,

‘‘One of the penalties of an ecological education is that one

lives alone in a world of wounds … … An ecologist must

either harden his shell and make believe that the

consequences of science are none of his business, or he

must be the doctor who sees the marks of death in a

community that believes itself well and does not want to be

told otherwise.’’

Leopold used the metaphor of integrated medical science and

practice to encourage a parallel integrated environmental science

and practice in which one studied ecological processes in part to

provide the means and capacity to diagnose the environment’s

ailments and then restore it back to health [2]. His prescience

however tended to be lost on generations of ecological scientists

and conservation practitioners who instead viewed the world

rather dichotomously. There was the built environment where

humans went about living; and then there was wild Nature where

ecological science could undertake detailed analysis of the

processes that shape the diversity of life and associated ecosystem

functioning [3]. The business of doing ecological science became

tantamount to finding cures for sickness by studying only healthy

subjects [3]. The business of conservation practice became one of

diagnosing and chronicling human-caused environmental destruc-

tion with the intent to spur the protection of Nature within

preserves and protected areas that eschewed human presence.

This reinforced an approach in ecology and conservation of

forecasting perpetual gloom and doom by giving the impression

that all human–environmental interactions necessarily lead to

irreversible damages [4,5].

This is not to suggest that human-caused damages to the

environment are not prevalent or problematic. Indeed, an

expanding human population has translated into increased

demand for natural resources and environmental services [4–6].

The global human footprint is now so large and far-reaching that

some have even begun to question the whole notion that the planet

could somehow be rationally divided into places that were

available to be domesticated by humans and places that safely

remained wild [5]. The reality is that as the biotic and biophysical

conditions of the environment become degraded in places where

humans exist, they often tend to abandon those places and search

for new ones to exploit. But, living on a finite planet with finite

space and finite resources means that there is limited if any

recourse to continue to abandon degraded areas and shift

exploitation to nondegraded ones [5–7]. The time has come to

operationalize Leopold’s vision of an integrated environmental

science and practice that provides the scientific understanding and

means to restore degraded environments back to health.

That vision, embodied in the idea of ‘‘restoration ecology,’’

connects basic ecological research with the mission to develop

techniques for rehabilitating the environment by encouraging

natural processes or by translating scientific insights into

management to speed up the processes [2,4,8]. In some respects,

this is a logical outgrowth of classic scientific understanding of the

way ecosystems have assembled themselves over time. Ecosystems

throughout the globe originated from natural development

processes of primary succession or natural restorative processes

of secondary succession [4,9]. Primary succession follows when

biotic components of ecosystems become established on barren

substrates like lava flows or glacial remains and then build up to

form a complex ecosystem. Secondary succession arises on

substrates previously occupied by biotic species after major

disturbances like fires and floods denuded the areas of the biota.

Widespread evidence of ecological succession shows the power of

natural processes to re-create ecosystems without help [4]. These

principles now form the basis of a new framework for systematic

study and reconstruction of ecosystems. The goal of restoration

ecology is to raise and answer questions through synthetic analysis

of the restorative process [3]. The application of the science

involves harnessing this natural capacity by introducing interven-
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tions that reverse the effects of long-term problems and steer

ecological systems back to their original, natural state. The

promise of restoration ecology is that it can create a tool kit of

management options to balance environmental protection and

providing environmental services for a burgeoning human

population.

Realizing the promise, however, requires addressing two

looming issues that pose important scientific challenges. First,

the idea of designing restoration to emulate or enhance

successional processes implies that ecosystems can recover

gradually from disturbances [7,10]. But, there is the potential

that disturbances could cause ecosystems to reach critical

thresholds causing catastrophic shifts in their state (Figure 1).

Restoration efforts may then become a proverbial difficult up-hill

climb, if they can be restored at all [7,10]. Second, ecological

science has not been conducted for a sufficient length of time to be

able to catalogue what the natural states of the myriad ecological

systems of the globe in fact are. Thus, to transfer ecological science

into practice, ecologists must first wrestle with defining what it

means for an ecosystem to be fully recovered and then, through

synthesis of ecological studies, identify conditions likely to lead to

full recovery [2,4,7,9,11,12].

A case in point concerns the global need to restore wetlands

such as marshes, peatlands, floodplains, mangroves, and brackish

estuaries [9]. Relative to their low representation globally (1.5% of

the Earth’s surface), wetlands provide huge services to humans,

valued in multiple trillions of dollars [9]. These highly important

ecosystems have, however, suffered some of the greatest levels of

destruction of all ecosystem types [13]. These facts necessarily

make wetlands important candidates for restoration efforts. But,

their successful recovery may be highly contingent upon the

landscape context, including surrounding habitat type and land

development, hydrological regime and topography, nutrient

inputs, and natural disturbance regimes [9]. In this issue of PLoS

Biology, Moreno-Mateos et al. [14] report on a synthesis of how

landscape context influences wetland restoration success in order

to establish a scientific prognosis for their recovery.

Moreno-Mateos et al. [14] conducted an exhaustive search of

the scientific literature and identified about 3,000 studies that

report on wetland restoration efforts. They then filtered this list of

studies using stringent criteria needed to judge restoration success.

Foremost, the study had to have an undisturbed reference to serve

as a natural state against which to compare the degree of wetland

damage and recovery. The study also had to focus on natural

wetlands, as opposed to highly engineered artificial systems.

Finally, the study had to be conducted over long time periods in

order to determine if the wetland is undergoing either gradual

recovery, threshold-like recovery, or is locked in an alternative

state. These criteria were met in only 4% of the approximately

3,000 studies. Granted, that 4% (124 studies) is a sufficient number

to undertake a scientifically defensible synthetic analysis; but, this

limitation in the number of rigorous studies faced here, with

similar constraints faced by other syntheses of ecological

restoration [7,12], highlights that the science of restoration

ecology is still very much in its infancy in its ability to gauge

restoration successes.

The synthesis of the 124 wetland restoration studies revealed that

recovery of the physical and biotic properties and the functioning of

wetland ecosystems proceeded on different time scales. Active

restoration of wetland physical features like topography, soil

permeability, surface and ground water flows lead to immediate

recovery. The abundance and composition of wetland vertebrate

species recovered to reference levels usually within 5 years. Large

aquatic invertebrates took 5 to 10 years to approach reference levels,

but in many cases did not reach absolute reference levels. Plant

assemblages took on average 30 years to converge on reference states.

Finally, it took 50 to 100 years for wetlands to recover normal nutrient

cycling. Interestingly, these time scales are on par with the time course

of secondary succession following natural disturbances [7]. Consistent

with expectations for wetland systems [9], the rate of recovery varied

Figure 1. Different potential ways that ecosystem state may change in relation to the level of environmental disturbance. Solid lines
denote pathways of state changes from natural to degraded conditions, and the dashed line indicates a transition where the system jumps from a
natural to a degraded state. The figure illustrates three general scenarios. Ecosystems may undergo gradual degradation with a rise in disturbance
level and may recovery gradually as the disturbance is abated. Ecosystems may exhibit threshold-like behavior in which a certain level of disturbance
causes an abrupt change in state and disturbance abatement causes an abrupt ‘‘up-hill’’ return in ecosystem state. Finally, an ecosystem may exhibit
a threshold shift in ecosystem state that may only be recoverable with a large turnaround of the critical environmental parameter or disturbance that
caused the system to shift from the original state. The scientific challenges in restoration ecology are: characterizing what a natural ‘‘green’’ state is;
identifying how long a perturbation must be in place to determine whether the system changes gradually or abruptly; and how long it will take to
reverse the effects of a disturbance. Figure is adapted from [10].
doi:10.1371/journal.pbio.1001248.g001
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with the environmental context. Larger wetlands recovered more

quickly than smaller wetlands. Wetlands in warmer climates

recovered more rapidly than in colder climates. Wetlands connected

to other wetlands via intact hydrological structure tended to recover

more rapidly than isolated wetlands. All told, in most cases the systems

tended to recover rather than be locked in an alternate state.

In an ideal world, society would exploit ecological systems in

ways that ensure long-term sustainability of their structure and

function rather than degrade them. But, with even the best

sustainable practices in place, unforeseen outcomes and damages

can happen accidentally [4,5]. Moreno-Mateos et al.’s study

provides evidence that given human will, it is possible to restore

human-damaged ecosystems on timescales of one to two human

generations. On a societal level, the promise of restoration ecology

demonstrated in this synthesis and other recent syntheses [7,12]

first helps to dispel the notion that human activity necessarily has

irreversible negative impacts on ecosystems [3,4,7] and, second,

shows that with ecological know-how and application, it is possible

to cure some ailing environments.
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