Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Effects of irrigation on global climate during the 20th century

Effects of irrigation on global climate during the 20th century

Various studies have documented the effects of modern‐day irrigation on regional and global climate, but none, to date, have considered the time‐varying impact of steadily increasing irrigation rates on climate during the 20th century. We investigate the impacts of observed irrigation changes over this century with two ensemble simulations using an atmosphere general circulation model. Both ensembles are forced with transient climate forcings and observed sea surface temperatures from 1902 to 2000; one ensemble includes irrigation specified by a time‐varying data set of irrigation water withdrawals. Early in the century, irrigation is primarily localized over southern and eastern Asia, leading to significant cooling in boreal summer (June–August) over these regions. This cooling spreads and intensifies by century’s end, following the rapid expansion of irrigation over North America, Europe, and Asia. Irrigation also leads to boreal winter (December–February) warming over parts of North America and Asia in the latter part of the century, due to enhanced downward longwave fluxes from increased near‐surface humidity. Precipitation increases occur primarily downwind of the major irrigation areas, although precipitation in parts of India decreases due to a weaker summer monsoon. Irrigation begins to significantly reduce temperatures and temperature trends during boreal summer over the Northern Hemisphere midlatitudes and tropics beginning around 1950; significant increases in precipitation occur in these same latitude bands. These trends reveal the varying importance of irrigation‐climate interactions and suggest that future climate studies should account for irrigation, especially in regions with unsustainable irrigation resources.

Credits: JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, D16120, doi:10.1029/2010JD014122, 2010

Fair Use OK

DOWNLOAD FILE — PDF document, 1,798 kB (1,842,091 bytes)