Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
3 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File Best Management Practices for Golden-winged Warbler Habitats in the Appalachian Region: A Guide for Land Managers and Landowners
This guide is intended to provide land managers and landowners with regional, habitat-specific strategies and techniques to begin developing and restoring habitat for Golden-winged Warblers. This document includes general information that applies to all habitat types in the Appalachian region and should be used along with supplemental documents dedicated to the management of specific regional habitat types (deciduous forests, minelands, abandoned farmlands, grazed forestland/montane pastures, utility rights-of-way, forest and shrub wetlands) most important to Golden-winged Warblers.
Located in Information Materials / Fact Sheets / Golden-Winged Warbler Appalachians Fact Sheets
File Best Management Practices for Golden-winged Warbler Habitat in Deciduous Forests of the Appalachians
This is a supplemental document that provides information on managing deciduous forests in the Appalachians to develop and restore habitat for Golden-winged Warblers. This guide should be used in conjunction with the Best Management Practices for Golden-winged Warbler Habitats in the Appalachian Region, which includes general information that applies to all habitat types in the Appalachian region.
Located in Information Materials / Fact Sheets / Golden-Winged Warbler Appalachians Fact Sheets
File Seeing past the green: Structure, composition, and biomass differences in high graded and silviculture-managed forests of similar stand density
Forests of the eastern United States (US) mostly comprise a mix of stands managed following silvicultural principles and stands managed with exploitative timber harvesting practices. These stands can have similar stand densities (e.g., basal area per hectare) but vary vastly in structure, composition, and biomass and carbon storage. High grading, a prevalent exploitative timber harvesting practice in the eastern US, is of particular concern because it can negatively affect future forest health and productivity. This study quantifies differences in forest structure, composition, and biomass and carbon storage between high graded stands and stands that received a seed/establishment cut of a uniform shelterwood regeneration sequence treatment, which is a comparable and well-established silvicultural method used to regenerate mixed-oak forests. It focuses on mixed-oak forests (mixed-Quercus), where the effects of high grading have been understudied, and uses a sample with broader spatial coverage than previous studies. The sample comprised nine stands that were known to have been high graded 8–15 years ago and nine stands that received the seed/establishment cut of a uniform shelterwood regeneration sequence. Stand were systematically sampled using fixed-area plots. Field measurements were collected and used to calculate metrics describing forest structure and function. The structure of high graded stands was characterized by a higher proportion of trees with poor health and/or form compared to shelterwood stands, with 18.3 % less acceptable growing stock and trees with lower crown compaction. Diameter distributions of high graded stands were characterized by numerous small trees and few large-diameter trees. Spatial variability of overstory trees was contingent on the tree size range evaluated, with a larger variability of sawtimber-sized trees (trees ≥ 29.2 cm in diameter at breast height) in high graded stands. High graded stands also had 2.2 times fewer oak trees (Quercus spp.) in the overstory canopy, 17,897 fewer seedlings per hectare (ha), and 45 Mg/ha less biomass than shelterwood stands. These results indicate that high grading generally degrades mixed-oak forests and impairs their long-term capacity to supply vital ecosystem services such as habitat for specific wildlife species, carbon storage, and high-quality wood products.
Located in Research / WLFW Outcomes: Funded Research