Date: Investigators:

#### I. Reach Information and Stratification

|                                 |           |           |                   | a |               |
|---------------------------------|-----------|-----------|-------------------|---|---------------|
| Project Name:                   |           |           |                   |   | Shading Key   |
| Reach ID:                       |           |           |                   |   | Desktop Value |
| Upstream Latitude:              |           |           |                   |   | Field Value   |
| Upstream Longitude:             |           |           |                   |   | Calculation   |
| Downstream Latitude:            |           |           |                   |   |               |
| Downstream Longitude:           |           |           |                   |   |               |
| Ecoregion:                      |           |           |                   |   |               |
| Drainage Area (sq. mi.):        |           |           |                   |   |               |
| Stream Reach Length (ft):       |           |           |                   |   |               |
| Total Length of Streambank (ft) |           |           |                   |   | _             |
| Flow Type:                      | Perrenial | Ephemeral | Intermittent      |   |               |
| Valley Type:                    | Colluvial | Alluvial  | Confined Alluvial |   |               |





#### Date: Investigators:

# HB SQT Rapid Assessment Form



| Bankfull Riffle Width (W <sub>bkf</sub> )                   | the surface width of the riffle cross-section at the bankfull stage                                                                                |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Bankfull Riffle Mean Depth (d <sub>bkf</sub> )              | mean depth of the riffle cross-section at the bankfull stage elevation                                                                             |
| Bankfull Riffle Cross-sectional<br>Area (A <sub>bkf</sub> ) | area of the riffle corss-section at the bankfull stage elevation (A_{bkf} = $W_{bkf}$ x $d_{bkf}$ )                                                |
| Bankfull Riffle Maximum Depth<br>(d <sub>max</sub> )        | the distance measured between the bankfull stage elevation and the channel thalweg at the riffle cross-section                                     |
| Flood-prone Area Width (W <sub>fpa</sub> )                  | width at an elevation that is twice the bankfull riffle maximum depth<br>measured perpendicular to the fall line of the valley in a riffle section |
| Entrenchment Ratio (ER)                                     | the vertical containment of a river calculated as flood-prone area width<br>divided by bankfull riffle width (W <sub>fpa</sub> /W <sub>bkf</sub> ) |

II. Hydrology

| 1. | Land Use Coefficient: |           | Reach Runoff A | creage: |           |
|----|-----------------------|-----------|----------------|---------|-----------|
|    | Land Use              | Area (ac) | Area (%)       | Curve # | % Area*CN |
|    |                       |           |                |         |           |
|    |                       |           |                |         |           |
|    |                       |           |                |         |           |
|    |                       |           |                |         |           |
|    |                       |           |                |         |           |
|    |                       |           |                |         |           |
|    | Tatala                |           |                |         |           |
|    | lotals                |           |                |         |           |

| 2. | Concentrated Flow Points: |  |
|----|---------------------------|--|
|    |                           |  |

## II. Hydraulics

|     | Bankfull Verification and                   |         |  |  |  |  |  |  |  |  |
|-----|---------------------------------------------|---------|--|--|--|--|--|--|--|--|
|     | Stable Riffle Cross Section                 |         |  |  |  |  |  |  |  |  |
| 1   | Difference between BKF stage and WS (ft)    |         |  |  |  |  |  |  |  |  |
|     | Average or consensus value from reach walk. |         |  |  |  |  |  |  |  |  |
| 2.  | Riffle Bankfull Width (ft)                  |         |  |  |  |  |  |  |  |  |
| 3.  | Bankfull Max Depth (D <sub>max</sub> )      |         |  |  |  |  |  |  |  |  |
| Δ   | Bankfull Mean Depth (ft)                    |         |  |  |  |  |  |  |  |  |
| 4.  | = Average of depth measureme                | nts     |  |  |  |  |  |  |  |  |
| 5.  | Bankfull Area (sq. ft.)                     |         |  |  |  |  |  |  |  |  |
| 5.  | Width * Mean Depth                          |         |  |  |  |  |  |  |  |  |
| 6.  | Regional Curve Bankfull Width (ft)          |         |  |  |  |  |  |  |  |  |
| 7.  | . Regional Curve Bankfull Mean Depth (ft)   |         |  |  |  |  |  |  |  |  |
| 8.  | Regional Curve Bankfull Area (s             | q. ft.) |  |  |  |  |  |  |  |  |
| 9.  | Curve Used                                  |         |  |  |  |  |  |  |  |  |
| 10. | Low Bank Height                             |         |  |  |  |  |  |  |  |  |
| 11. | Flood Prone Width (FPW; ft)                 |         |  |  |  |  |  |  |  |  |
| 12. | Entrenchment Ratio (ER)                     |         |  |  |  |  |  |  |  |  |
| 13. | Width Depth Ratio (WDR)                     |         |  |  |  |  |  |  |  |  |
| 14. | Bank Height Ratio (BHR)                     |         |  |  |  |  |  |  |  |  |
| 15. | Stream Type                                 |         |  |  |  |  |  |  |  |  |

| Cross Section Measurements<br>Depth measured from bankfull |       |         |       |  |  |  |  |  |  |  |  |
|------------------------------------------------------------|-------|---------|-------|--|--|--|--|--|--|--|--|
| Station                                                    | Depth | Station | Depth |  |  |  |  |  |  |  |  |
|                                                            |       |         |       |  |  |  |  |  |  |  |  |
|                                                            |       |         |       |  |  |  |  |  |  |  |  |
|                                                            |       |         |       |  |  |  |  |  |  |  |  |
|                                                            |       |         |       |  |  |  |  |  |  |  |  |
|                                                            |       |         |       |  |  |  |  |  |  |  |  |
|                                                            |       |         |       |  |  |  |  |  |  |  |  |
|                                                            |       |         |       |  |  |  |  |  |  |  |  |
|                                                            |       |         |       |  |  |  |  |  |  |  |  |
|                                                            |       |         |       |  |  |  |  |  |  |  |  |
|                                                            |       |         |       |  |  |  |  |  |  |  |  |
|                                                            |       |         |       |  |  |  |  |  |  |  |  |
|                                                            |       |         |       |  |  |  |  |  |  |  |  |
|                                                            |       |         |       |  |  |  |  |  |  |  |  |
|                                                            |       |         |       |  |  |  |  |  |  |  |  |
|                                                            |       |         |       |  |  |  |  |  |  |  |  |

#### III. Geomorphology

#### 1. Large Woody Debris Index

| from Large Woody Degris Field Form (page 5) |   |   |   |   |   |   |            |  |  |  |  |
|---------------------------------------------|---|---|---|---|---|---|------------|--|--|--|--|
| Score                                       | 1 | 2 | 3 | 4 | 5 | Σ | LWDI Score |  |  |  |  |
| Pieces                                      |   |   |   |   |   |   |            |  |  |  |  |
| Pieces*Score                                |   |   |   |   |   |   |            |  |  |  |  |
| Debris Dams                                 |   |   |   |   |   |   |            |  |  |  |  |
| (Debris Dams*Score)*5                       |   |   |   |   |   |   |            |  |  |  |  |

LWDI Score = ( $\Sigma$ (Pieces\*Score)) + ( $\Sigma$ (Debris Dams\*Score)\*5))

#### 2. Lateral Migration

#### a. Dominant BEHI/NBS

Step 1: Record field data on BEHI/NBS Field Form (page 6)

Step 2: Enter field data into BEHI and NBS Processing excel document available here:

https://www.landscapepartnership.org/networks/working-lands-for-wildlife/target-species/eastern-hellbender/partnerworkspace/hellbender-sqt-materials

Step 3: From the SQT Field Value Calculation table (starting at line 48 in BEHI and NBS Processing document), identify the BEHI/NBS category with the highest percent represented in the reach. This category is your field value for the SQT.

Dominant BEHI/NBS Field Value:

#### b. Percent Streambank Erosion (get values from BEHI/NBS Field Form)

| Total Length of Streambank =        |          | Total linear ft of eroding banks = |  |
|-------------------------------------|----------|------------------------------------|--|
| (Erosion/Total Length of Streambank | :)*100 = |                                    |  |

#### c. Percent Armoring

| c. Percent Armoring  |           |          |  | Length |  |  |
|----------------------|-----------|----------|--|--------|--|--|
|                      |           |          |  |        |  |  |
| Armoring (linear ft) |           |          |  |        |  |  |
|                      |           |          |  |        |  |  |
|                      | Total lir | noring = |  |        |  |  |
| (Armoring/           | Total Len | <)*100 = |  |        |  |  |

#### LARGE WOODY DEBRIS FIELD FORM

| Investigator(s)            |                                                 |                        |                | State                            |                                             |                     |                                   | Forest Type      | Deciduous               | s Evergreen | Mixed | Other  |
|----------------------------|-------------------------------------------------|------------------------|----------------|----------------------------------|---------------------------------------------|---------------------|-----------------------------------|------------------|-------------------------|-------------|-------|--------|
| Date                       |                                                 |                        |                | County                           |                                             |                     |                                   | Forest Age (yrs) |                         |             |       |        |
| Stream Name                |                                                 |                        |                | Phys. Province                   | Latitude                                    |                     |                                   |                  |                         |             |       |        |
| Reach ID                   |                                                 |                        |                | Drainage Area (mi <sup>2</sup> ) |                                             |                     |                                   | Longitude (dd)   |                         |             |       |        |
| Watershed Name             |                                                 |                        |                | Dominant Species                 |                                             |                     |                                   |                  |                         |             |       |        |
| Survey Length (ft)         | 328                                             | Survey Length = 3      | 328 ft/100 m   | BKF Width (ft)                   |                                             |                     |                                   | Slope (ft/ft)    |                         |             |       |        |
| Stream Classification      | Ephemeral                                       | Intermittent           | Perennial      | BKF Mean Depth (ft)              |                                             |                     |                                   | Bed material     |                         |             |       |        |
| Stream Condition           | Degraded R                                      | estored Reference      | e Managed      | Floodprone Width (ft)            |                                             |                     |                                   | Rosgen Type      |                         |             |       |        |
| Field Notes:               |                                                 |                        |                |                                  |                                             |                     |                                   |                  |                         |             |       |        |
|                            |                                                 |                        |                |                                  | SC                                          | ORE                 |                                   |                  |                         |             |       |        |
|                            |                                                 | 1                      |                | 2                                |                                             | 3                   |                                   | 4                |                         | 5           |       |        |
| CATEGORY                   |                                                 |                        |                | 1                                | * PIE                                       | CES *               | -                                 |                  |                         |             | TOTAL | PIECES |
| Length/BKF Width           | 0 to 0.4                                        |                        | 0.4 to 0.6     |                                  | 0.6 to 0.8                                  |                     | 0.8 to 1.0                        |                  | > 1.0                   |             |       |        |
| Diameter (cm)              | 10 to 20                                        |                        | 20 to 30       |                                  | 30 to 40                                    |                     | 40 to 50                          |                  | >50                     |             |       |        |
| Location                   | Zone 4 (Above<br>BKF/Extending<br>into Channel) |                        |                |                                  | Zone 3 (Above<br>BKF/Within<br>Streambanks) |                     | Zone 2<br>(Above<br>WS/Below BKF) |                  | Zone 1<br>(Below<br>WS) |             |       |        |
| Туре                       | Bridge                                          |                        |                |                                  | Ramp                                        |                     | Submersed                         |                  | Buried                  |             |       |        |
| Structure                  | Plain                                           |                        | Plain/Int      |                                  | Intermediate                                |                     | Int/Sticky                        |                  | Sticky                  |             |       |        |
| Stability                  | Moveable                                        |                        | Mov/Int        |                                  | Intermediate                                |                     | Int/Sec                           |                  | Secured                 |             |       |        |
| Orientation (deg)          | 0 to 20                                         |                        | 20 to 40       |                                  | 40 to 60                                    |                     | 60 to 80                          |                  | 80 to 90                |             |       |        |
| CATEGORY                   |                                                 |                        |                |                                  | ** DEBRIS DAMS **                           |                     |                                   |                  |                         |             | TOTAL | DAMS   |
| Length<br>(% of BKF Width) | 0 to 20                                         |                        | 20 to 40       |                                  | 40 to 60                                    |                     | 60 to 80                          |                  | 80 to 100               |             |       |        |
| Height<br>(% of BKF Depth) | 0 to 20                                         |                        | 20 to 40       |                                  | 40 to 60                                    |                     | 60 to 80                          |                  | 80 to 100               |             |       |        |
| Structure                  | Coarse                                          |                        | Coarse/Int     |                                  | Intermediate                                |                     | Int/Fine                          |                  | Fine                    |             |       |        |
| Location                   | Partially high flow                             |                        | In high flow   |                                  | Partially low<br>flow                       |                     | Mid low flow                      |                  | In low flow             |             |       |        |
| Stability                  | Moveable                                        |                        | Mov/Int        |                                  | Intermediate                                |                     | Int/Sec                           |                  | Secured                 |             |       |        |
| * Pieces - Non-living wo   | od that has a large                             | e end diameter ≥ 10 cm | and has a leng | th ≥ 1 m.   ** Debris Dams       | - Three (3) or more                         | re pieces touching. |                                   |                  |                         |             |       |        |

Investigators:

# **BEHI/NBS Field Form**

#### Reach ID: Valley Type: Bed Material:

|            |                |                         | Bank Erosion Hazard Index (BEHI) |      |                        |            |                       |               |                |             |         |       |
|------------|----------------|-------------------------|----------------------------------|------|------------------------|------------|-----------------------|---------------|----------------|-------------|---------|-------|
| Station ID | Bank<br>Length | Study<br>Bank<br>Height | BKF<br>Height<br>(ft)            | Root | Root<br>Density<br>(%) | Bank Angle | Surface<br>Protection | Bank Material | Stratification | BEHI Total/ | NBS     | Notes |
| Station ib | (1)            |                         | (10)                             |      | (70)                   | (degrees)  | (70)                  | Aujustment    | Aujustment     | category    | Ranking | Notes |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |
|            |                |                         |                                  |      |                        |            |                       |               |                |             |         |       |

# **HB SQT Rapid Assessment Form**

Date:

# Investigators: III. Geomorpholoy continued

# 3. Riprian Vegetation

a. Forested Buffer Width measured to the extent of continuous canopy cover

|                            | Buffer Width Measurements (ft) |  |  |  |  |  |  |        |  |  |  |
|----------------------------|--------------------------------|--|--|--|--|--|--|--------|--|--|--|
| Left (looking downstream)  |                                |  |  |  |  |  |  |        |  |  |  |
| Left (looking downstream)  |                                |  |  |  |  |  |  |        |  |  |  |
|                            |                                |  |  |  |  |  |  | R Avg. |  |  |  |
| Right (looking downstream) |                                |  |  |  |  |  |  |        |  |  |  |
| Right (looking downstream) |                                |  |  |  |  |  |  |        |  |  |  |

#### **b**, **Buffer Width of Undisturbed Soil** eroding streambanks DO NOT count as disturbed soil for this metric

|                            | Buffer Width Measurements (ft) |  |  |  |  |  |  |        |  |  |  |
|----------------------------|--------------------------------|--|--|--|--|--|--|--------|--|--|--|
| Left (looking downstream)  |                                |  |  |  |  |  |  |        |  |  |  |
| Left (looking downstream)  |                                |  |  |  |  |  |  |        |  |  |  |
|                            |                                |  |  |  |  |  |  | R Avg. |  |  |  |
| Right (looking downstream) |                                |  |  |  |  |  |  |        |  |  |  |
| Right (looking downstream) |                                |  |  |  |  |  |  |        |  |  |  |

#### c. Stem Density (30'x30' plots)

| Left Bank Plots              | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Total |
|------------------------------|---|---|---|---|---|---|---|---|-------|
| Total Stems                  |   |   |   |   |   |   |   |   |       |
| Right Bank Plots             | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Total |
| Total Stems                  |   |   |   |   |   |   |   |   |       |
|                              |   |   |   |   |   |   |   |   | Avg.  |
| L StemDensity (#/1300)*43560 |   |   |   |   |   |   |   |   |       |
| R StemDensity (#/1300)*43560 |   |   |   |   |   |   |   |   |       |

#### d. Forested Buffer Gap

| Left Bank Forested Section   |  |               |  |               |  | Total |
|------------------------------|--|---------------|--|---------------|--|-------|
| Lengths                      |  |               |  |               |  |       |
| Right Bank Forested          |  |               |  |               |  | Total |
| Section Lengths              |  |               |  |               |  |       |
|                              |  |               |  |               |  |       |
| Total Length of Streambank = |  | LB % Forest = |  | RB % Forest = |  |       |

#### III. Geomorpholoy continued

#### 4. Bed Form Diversity (all components can be pulled from longitudinal profile)

#### a. Pool Spacing Ratio and b. Pool Depth Ratio

|                                                | P1 | P2 | Р3                        | P4 | P5 | P6 | P7 | P8 |
|------------------------------------------------|----|----|---------------------------|----|----|----|----|----|
| Geomorphic Pool?                               |    |    |                           |    |    |    |    |    |
| Station<br>At maximum pool depth               |    |    |                           |    |    |    |    |    |
| P-P Spacing (ft)                               | х  |    |                           |    |    |    |    |    |
| Pool Spacing Ratio<br>Pool Spacing / BKF Width | х  |    |                           |    |    |    |    |    |
| Pool Depth (ft)                                |    |    |                           |    |    |    |    |    |
| Pool Depth Ratio<br>Pool depth/BKF mean D      |    |    |                           |    |    |    |    |    |
| Average Pool Depth Ratio                       |    |    | Median Pool Spacing Ratio |    |    |    |    |    |

#### c. Percent Riffle (data can be pulled from longitudinal profile)

|                | Riffle | Station<br>Start | Station<br>End | Length | Riffle | Station<br>Start | Station<br>End | Length |
|----------------|--------|------------------|----------------|--------|--------|------------------|----------------|--------|
|                | 1      |                  |                |        | 14     |                  |                |        |
| Reach Length   | 2      |                  |                |        | 15     |                  |                |        |
|                | 3      |                  |                |        | 16     |                  |                |        |
|                | 4      |                  |                |        | 17     |                  |                |        |
| Percent Riffle | 5      |                  |                |        | 18     |                  |                |        |
|                | 6      |                  |                |        | 19     |                  |                |        |
|                | 7      |                  |                |        | 20     |                  |                |        |
|                | 8      |                  |                |        | 21     |                  |                |        |
|                | 9      |                  |                |        | 22     |                  |                |        |
|                | 10     |                  |                |        | 23     |                  |                |        |
|                | 11     |                  |                |        | 24     |                  |                |        |
|                | 12     |                  |                |        | 25     |                  |                |        |
|                | 13     |                  |                |        | 26     |                  |                |        |

# HB SQT Rapid Assessment Form

Date: Investigators:

### III. Geomorpholoy continued

| 5  | <b>Bed Material Characterization</b> |       |   |   | D      | ays Since  | Bankfull    |         |
|----|--------------------------------------|-------|---|---|--------|------------|-------------|---------|
| J. | bed material characterization        | Date: |   |   | Event: |            | (must       |         |
|    | a. Substrate Embeddedness            |       |   |   |        | be at leas | t 30 days ) |         |
|    | Transect                             | 1     | 2 | 3 | 4      | 5          | 6           | Average |
|    | Quad 1                               |       |   |   |        |            |             |         |
|    | Quad 2                               |       |   |   |        |            |             |         |
|    | Quad 3                               |       |   |   |        |            |             |         |
|    | Transect                             | 7     | 8 | 9 | 10     | 11         |             |         |
|    | Quad 1                               |       |   |   |        |            |             |         |
|    | Quad 2                               |       |   |   |        |            |             |         |
|    | Quad 3                               |       |   |   |        |            |             |         |

#### V. \*\*\*\*Biology\*\*\*\*

#### 1. Macros

| a. Intolerant Macros Index | Group 1 |   |   |    |    |   |                  |      |  |
|----------------------------|---------|---|---|----|----|---|------------------|------|--|
| Transect                   | 1       | 2 | 3 | 4  | 5  | 6 | Total            | FV   |  |
| Quad 1                     |         |   |   |    |    |   |                  |      |  |
| Quad 2                     |         |   |   |    |    |   | Gro              | up 2 |  |
| Quad 3                     |         |   |   |    |    |   | Total            | FV   |  |
| Leaf Pack                  |         |   |   |    |    |   |                  |      |  |
|                            | 7       | 8 | 9 | 10 | 11 |   | Gro              | ир 3 |  |
| Rock 1                     |         |   |   |    |    |   | Total            | FV   |  |
| Rock 2                     |         |   |   |    |    |   |                  |      |  |
| Rock 3                     |         |   |   |    |    |   | ITMI Field Value |      |  |
| Leaf Pack                  |         |   |   |    |    |   |                  |      |  |

#### III. Geomorpholoy continued

#### 5. Bed Material Characterization cont...

#### b. Percent Fines, D50 (data should come from engineers completing design)

If the design team is not providing pebble count data or you decide to inlcude pebble count data in the assessment for a non-streambank stabilization project, use the Pebble Count Form on page 11 to record the data.

Note: Data from the design team should already include D50, but may not calculate percent fines. Percent fines is calculated as the cumulative percent of substrate that is > 2mm. Use the Pebble Count Analyzer, if needed, to calculate this information with the data provided by the design team.

Pebble Count Analyzer: https://www.landscapepartnership.org/networks/working-lands-for-wildlife/targetspecies/eastern-hellbender/partner-workspace/hellbender-sqt-materials/pebble-count-analyzer

#### c. Cover Rock and d. Nest Rock Density

| Cover Rocks (tally)         |                  | Total  |        |                              |
|-----------------------------|------------------|--------|--------|------------------------------|
| Avail. Nest Sites (tally)   |                  | Total  |        |                              |
| Stream Length Assessed (ft) |                  |        | Length | of B axis                    |
| Wetted Width (ft)           |                  | 20-36" | >36"   | Bedrock (if clear<br>cavity) |
| Cover Rock Density          | Riffle           | Cover  | Cover  | Nest                         |
| Available Nest Site Dens.   | Run, Glide, Pool | Cover  | Nest   | Nest                         |

#### IV. Physicochemical

#### 1. Summer Daily Maximum Temperature

#### 2. Fecal Coliform

| Animal Units    | Livestock Type | Average Weight | Animal Units/Animal | _ |
|-----------------|----------------|----------------|---------------------|---|
| Discharge (cfs) | Goat           | 150            | 0.15                |   |
| col/100mL       | Sheep          | 160            | 0.16                | 2 |
|                 | Horse          | 1000           | 1                   |   |

| Site:       | Site:           |             |            |                        |             |          | R     | FFLE ( | 1)                         |       | POOL   | (2)   | COMPOSITE (3) |        |       |       |        |       |
|-------------|-----------------|-------------|------------|------------------------|-------------|----------|-------|--------|----------------------------|-------|--------|-------|---------------|--------|-------|-------|--------|-------|
| Location:   |                 | н           | UC:        |                        |             |          |       |        |                            | Reach | :      |       | Reach         | :      |       | Reach | :      |       |
| Observers   | S:              |             |            |                        | Do          | t        | Count | t f    | for                        | Date: |        |       | Date:         |        |       | Date: |        |       |
| Inches      | PARTICLE        | Millimeters |            | $\operatorname{RIF}_1$ | FLE         | <u> </u> | POOL  |        | $\operatorname{COMP.}_{3}$ | тот # | ITEM % | % CUM | TOT #         | ITEM % | % CUM | TOT # | ITEM % | % CUM |
|             | Silt / Clay     | < .062      | S/C        |                        |             | <u> </u> |       |        |                            |       |        |       |               |        |       |       |        |       |
|             | Very Fine       | .062125     |            |                        |             |          |       | _      |                            |       |        |       |               |        |       |       |        |       |
|             | Fine            | .12525      | S          |                        |             | 1        |       |        |                            |       |        |       |               |        |       |       |        |       |
|             | Medium          | .2550       |            |                        |             | 1        |       |        |                            |       |        |       |               |        |       |       |        |       |
|             | Coarse          | .50 - 1.0   |            |                        |             | 1        |       |        |                            |       |        |       |               |        |       |       |        |       |
| .0408       | Very Coarse     | 1.0 - 2     |            |                        |             | -        |       | _      |                            |       |        |       |               |        |       |       |        |       |
| .0816       | Very Fine       | 2 - 4       |            |                        |             |          |       |        |                            |       |        |       |               |        |       |       |        |       |
| .1622       | Fine            | 4 - 5.7     |            |                        |             |          |       |        |                            |       |        |       |               |        |       |       |        |       |
| .2231       | Fine            | 5.7 - 8     | G          |                        |             |          |       |        |                            |       |        |       |               |        |       |       |        |       |
| .3144       | Medium          | 8 - 11.3    | R          |                        |             |          |       |        |                            |       |        |       |               |        |       |       |        |       |
| .4463       | Medium          | 11.3 - 16   | V          |                        |             |          |       |        |                            |       |        |       |               |        |       |       |        |       |
| .6389       | Coarse          | 16 - 22.6   | E          |                        |             | i.       |       | -      |                            |       |        |       |               |        |       |       |        |       |
| .89 - 1.3   | Coarse          | 22.6 - 32   | J.U.       |                        |             | <u> </u> |       |        |                            |       |        |       |               |        |       |       |        |       |
| 1.3 - 1.8   | Very Coarse     | 32 - 45     |            |                        |             |          |       |        |                            |       |        |       |               |        |       |       |        |       |
| 1.8 - 2.5   | Very Coarse     | 45 - 64     |            |                        |             | <u>i</u> |       |        |                            |       |        |       |               |        |       |       |        |       |
| 2.5 - 3.5   | Small           | 64 - 90     | HC P       |                        |             |          |       | _      |                            |       |        |       |               |        |       |       |        |       |
| 3.5 - 5.0   | Small           | 90 - 128    | RBR        |                        |             |          |       | _      |                            |       |        |       |               |        |       |       |        |       |
| 5.0 - 7.1   | Large           | 128 - 180   | <b>P</b>   |                        |             | <u> </u> |       |        |                            |       |        |       |               |        |       |       |        |       |
| 7.1 - 10.1  | Large           | 180 - 256   | HB         |                        |             | 1        |       |        |                            |       |        |       |               |        |       |       |        |       |
| 10.1 - 14.3 | Small           | 256 - 362   | B          |                        |             |          |       |        |                            |       |        |       |               |        |       |       |        |       |
| 14.3 - 20   | Small           | 362 - 512   | ŬL         |                        |             | 1        |       |        |                            |       |        |       |               |        |       |       |        |       |
| 20 - 40     | Medium          | 512 - 1024  | <b>JEN</b> |                        |             | ł        |       |        |                            |       |        |       |               |        |       |       |        |       |
| 40 - 80     | Large-Vry Large | 1024 - 2048 | R          |                        |             | <u> </u> |       |        |                            |       |        |       |               |        |       |       |        |       |
|             | Bedrock         |             | BDRK       |                        |             | 1        |       | 1      |                            |       |        |       |               |        |       |       |        |       |
| Stream T    | <u>ype:</u>     | <u>L</u>    | andso      | ape T                  | <u>ype:</u> |          |       |        | <i>TOTAL→</i>              |       |        |       |               |        |       |       |        |       |

#### V. Biology

#### 1. Hellbender Presence

#### a. Eggs, Larva, Subadult, or Adult Presence (record lenghts, location, if no capture assume adult if not obviously other)

| Length | Location | Adult    | > 289 mm                         |
|--------|----------|----------|----------------------------------|
|        |          | Subadult | 131-289mm                        |
|        |          | Juvenile | No external gills<br>and < 131mm |
|        |          | Larva    | External gills<br>present        |
|        |          |          |                                  |
|        |          |          |                                  |
|        |          |          |                                  |
|        |          |          |                                  |
|        |          |          |                                  |
|        |          |          |                                  |
|        |          |          |                                  |
|        |          |          |                                  |
|        |          |          |                                  |
|        |          |          |                                  |
|        |          |          |                                  |
|        |          |          |                                  |
|        |          |          |                                  |
|        |          |          |                                  |