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Significant anthropogenic-induced 
changes of climate classes since 
1950
Duo Chan & Qigang Wu

Anthropogenic forcings have contributed to global and regional warming in the last few decades 
and likely affected terrestrial precipitation. Here we examine changes in major Köppen climate 
classes from gridded observed data and their uncertainties due to internal climate variability using 
control simulations from Coupled Model Intercomparison Project 5 (CMIP5). About 5.7% of the global 
total land area has shifted toward warmer and drier climate types from 1950–2010, and significant 
changes include expansion of arid and high-latitude continental climate zones, shrinkage in polar 
and midlatitude continental climates, poleward shifts in temperate, continental and polar climates, 
and increasing average elevation of tropical and polar climates. Using CMIP5 multi-model averaged 
historical simulations forced by observed anthropogenic and natural, or natural only, forcing 
components, we find that these changes of climate types since 1950 cannot be explained as natural 
variations but are driven by anthropogenic factors.

Anthropogenic forcings, dominated by increasing greenhouse gas (GHG) concentrations, have very 
likely contributed to global and regional warming since 19501–5 and likely affected land precipitation5–9. 
Long-term changes in climate classes are also important indicators for climatic changes. The Köppen 
climate classes are designed to explain observed biome distributions, which have many sharp boundaries 
due to plant sensitivity to threshold values of average monthly temperature and precipitation and their 
annual cycle10–11. Köppen or similar classifications have been used to estimate the potential impacts of 
past and projected future climate on prevalent ecoregions on regional and global scales10–19. For example, 
major Köppen climate types are projected to shift strongly toward warmer and drier climates (temperate, 
tropical and arid), with climate types in 31.4% and 46.3% of the global land area projected to change by 
2100 under RCP4.5 and RCP8.5 scenarios, respectively20.

However, it is still not clear whether significant changes of climate types are already detectable in 
observations, and whether such changes can be attributed to external anthropogenic forcing. This study 
uses updated thresholds11 for five major climate classes (Methods) based on climate data at a location, 
with tests performed in the following order to always assign a unique climate class: Arid (class B), 
Tropical (class A), Polar (class E), Temperate (class C), Continental (class D). To reduce the probabilistic 
influence of shorter-term climate variability and elongate the period with available data, a 15-yr run-
ning smooth is applied to all variables in both observation and model data. We compute Köppen cli-
mate classifications from gridded observation and model data compared to 1950 to develop four indices 
describing the distribution of climate types: (1) percentage of world land area with a major climate type 
change from 1950; (2) total area occupied by each major climate type; (3) averaged absolute latitude of 
each major climate type; and (4) average elevation of each major climate type. Changes of these indices 
and their statistical significance are first evaluated, and the relative roles of external anthropogenic and 
natural forcing in these changes are assessed.
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We primarily use the University of Delaware (UD) global land 0.5° gridded monthly temperature and 
precipitation dataset21–22, updated through 2010, to calculate the Köppen climate type in each grid box. 
The UD dataset has been used in other studies of Köppen climate classification20. Temperature and pre-
cipitation fields in the UD dataset are heavily interpolated and the regional averages reflect to a certain 
degree the changes in data coverage over both time and space. For comparison, we use two other datasets 
to examine the robustness and consistency of detected changes of climate type indices in the UD dataset, 
including the University of East Anglia Climate Research Unit (CRU) 0.5° gridded monthly temperature 
and precipitation dataset (CRU_TS_3.22)23 and the Goddard Institute for Space Studies (GISS) 2° ×  2° 
gridded monthly temperature anomaly field24. The CRU dataset fills in all grid boxes, but effectively 
has zero anomalies in grid boxes with no stations within 1200 km, while the GISS temperature dataset 
counts such grid boxes as “missing.” Such “interpolated” boxes in UD and CRU are almost identical to 
the “missing” boxes in GISS (see Supplementary Fig. S4). Even with differing procedures to develop 
gridded values, the annual and long-term values from these datasets agree very well. Because GISS does 
not provide a precipitation dataset, here the UD precipitation is also averaged to the GISS grid, and “GISS 
dataset” refers to the GISS temperature and regridded UD precipitation data at 2° resolution.

Model runs are selected from the CMIP5 dataset25, including preindustrial control (PI-CTL) runs to 
estimate natural variability statistics, historical runs to distinguish natural and anthropogenic factors, 
and projection runs to estimate future climate type changes (Supplementary Table S1). For each major 
climate type, we apply a one-sided local significance test to identify whether the observed trends of the 
four indices are significantly different from zero at the 5% significance level.

Observed changes of climate type indices from the UD dataset. For any year of the 54-yr 
period, the percentage of the world land area that has experienced a major climate type change compared 
to 1950 in observations or the first year of a PI-CTL simulation can be calculated. Figure 1a shows the 
evolution of this percentage from 1951–2003 in observations (black solid line) and the 95th percentile 
from 225 54-yr PI-CTL simulations (dark gray shading). Because each year is the middle year of a 
15-year sample, the percentage of land area with a changed climate type increases rapidly in the first 
15 years (as the overlap of 15-year periods diminishes so 1966, or the 1958–1972 average, is the first 
period with no overlap with 1950, or the 1943–1957 average), then stabilizes (for 95th percentile shading 
or blue line, because the mean has negligible change), or rises slowly (for other lines, because the mean 
climate has changed). From Fig. 1b, based on these control simulations, natural variability would usually 
cause about 2–4% of the global land area to have a different major climate type than 54 years earlier. 
In Fig. 1a, the 95th percentile of land area with a different major climate type stabilizes at 4.1–4.2% for 
all time separations exceeding the 15-yr averaging period in control runs, so the distribution as shown 
in Fig. 1b for 54-year separations is very similar for any time separation >15 years. However, based on 
observations, the area with major climate type changes becomes consistently greater than zero at the 5% 
significance level beginning around 1980. This suggests that significant climate shifts were detectable 
before the recent dramatic and accelerated warming.

The geographical distribution of observed (1950–2003, detrended) and CMIP5 model control run 
variances of grid box annual averaged surface air temperature (SAT) and precipitation over land is 
shown in Supplementary Fig. S1. The general features of observed variability are well simulated in the 
multi-model ensemble-mean simulations. The CMIP5 models have comparable or larger variability of 
temperature and precipitation than observed over 86% of land grid boxes (excluding the Antarctic). 
Therefore, the significance of the change in Fig.  1a is not likely overestimated. However, a more con-
servative test of doubling the variance of distribution of 54-year changed area percentage due to internal 
climate variability in Fig.  1b gives an alternative 95% cumulative probability in Fig.  1a shown by light 
gray shading, and this level is consistently exceeded starting 1996. About 5.7% of the land surface has 
experienced shifts in major climate types by 2003, and changes are scattered in all major types rather 
than being constrained in only one or two.

Figure  2 shows linear trends of area, latitude and elevation indices from 1950 to 2003. Expansion 
(shrinkage) exceeding 5% significance is found in arid (polar) climate at a rate of 4.8 ×  105 (− 2.8 ×  105) 
km2 decade−1. Significant poleward shifts are detected in temperate, continental and polar climate aver-
aging 35.4, 16.2 and 12.6 km decade−1, respectively, and significant elevation shifts in tropical and polar 
climate averaging 3.0 and 14.3 m decade−1, respectively. Trends of total areas and averaged elevations 
of temperate and continental climate are negative and not significant, but both shrinkage of continen-
tal climate over regions south of 55°N (− 2.9 ×  105 km2 decade−1) and expansion of continental climate 
north of 55°N (2.2 ×  105 km2 decade−1) are statistically significant. All climate types show net poleward 
movement (Fig.  2b) due to poleward expansion of A and B climates and poleward shrinkage of C, D, 
and E climates. Even if the estimated variance of each trend is doubled in Fig. 2, the above significant 
trends can still be detected at the 5% level.

Figure 2d,e show grid boxes with disappearing and emerging climate types from 1950–2003. The most 
conspicuous feature is a worldwide expansion of B climate (mainly semiarid) at the expense of C and 
midlatitude D climate. Rising temperature and decreasing precipitation are about equally important in 
causing the expansion of semiarid climate in Asia and western North America, while the contribution 
of decreasing precipitation to the increasing semiarid climate is much larger than that of temperature 
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over North Africa, South Africa and South America. Overall, temperature and precipitation play similar 
roles in the expansion of B climate (Supplementary Figs S2d–e). In the tropics, B replaces A climate over 
northern India and the southern Sahara due to reduced precipitation, but A climate emerges in southern 
India and higher elevations over South America, northern South Africa and northern Australia mainly 
due to increasing temperature. The above changes raise the average elevation of A climate. Over the 
low level regions north of 55°N, the current E climate distribution is more likely to be affected first by 
increasing warming, but higher elevations remain cold enough to maintain the existing climate zones. 
The replacement of E by D climate is found over Alaska, northern Canada, Siberia and Far East regions 
in Asia, and over the Tibetan Plateau, leading to a significant shrinkage and higher elevation of E climate, 
and a poleward shift of D and E climate. The rising elevation of A and E climates was reported in a mod-
eling study19. The reduction of the area of C climate is mainly caused by the shift to A or B climate over 
large regions of South Africa and South America driven by both temperature and precipitation changes. 
Both shifts of D to C climate in large areas over Europe and East Asia due to increasing temperature and 
B to C climate over South America due to increasing precipitation contribute to a significant poleward 
shift of C climate.

Changes in climate types are generally not seen in interpolated or “missing” boxes, which are mostly in 
the Sahara, South Africa, Mid-East, Southeast Asia, northern South America, Greenland and Antarctica 
(Figs S2d–e). Most land areas with no weather station within 1200 km are extremely dry or cold (or in a 
tropical rain forest), and the climate is not close to a major type threshold. Therefore, results of significant 
changes of the land area percentage index and major climate indices in Figs 1–2 are not dependent on 
the interpolated grid boxes.
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Figure 1. (a) Percentage of world land area with a climate type change in each year compared to 1950 from 
UD (black solid line) and CRU (black dashed line) observations, and HIST-ALL (yellow), HIST-GHG (red), 
and HIST-NAT (blue) runs. Dark shading shows the 95th percentile of changed climate types relative to the 
starting year based on 54-year samples of PI-CTL simulations as illustrated in (b), and light shading shows 
the estimated 95th percentile if the variance is doubled. (b) Distribution of 54-year changed area percentage 
due to internal climate variability based on 225 PI-CTL samples (gray bars) with their mean value of 3.1% 
indicated by the black dashed line. The vertical solid lines are the observed percentages of global land area 
with a changed climate class in the UD dataset (about 5.7%, black line) and the CRU dataset (about 5.6%, 
gray line). (c) Same as (a) but for the GISS dataset. (d) Same as (b) but for the GISS dataset. Panel (d) uses 
the same PI-CTL runs as in (c) but grids are averaged at the GISS resolution and calculations exclude GISS 
“missing” grid boxes.
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Sensitiveness to different observed datasets. The UD and CRU datasets produce very similar cli-
mate type change detection results (Table 1). The percentage of the world land area that has experienced 
a major climate type change compared to 1950 has an almost identical trend in both datasets (Fig. 1a,b). 
Expansion exceeding 5% significance is found in the areas of arid climate and continental climate north 
of 55°N at a rate of 4.2 ×  105 and 2.3 ×  105 km2 decade−1 respectively, while significant shrinkage of 
polar climate and continental climate south of 55°N is found at −2.9 ×  105 and −3.2 ×  105 km2 decade−1, 
respectively. Significant poleward shifts are detected in temperate, continental and polar climate averag-
ing 45.6, 17.1 and 9.8 km decade−1, respectively. Significant elevation shifts in tropical and polar climate 
are also detected averaging 3.1 and 17.6 m decade−1, respectively. The above changes and similar results 
of grid boxes with disappearing and emerging climate types from 1950–2003 for the CRU dataset are 
shown in Supplementary Fig. S3.

The main findings are also reproduced using the GISS dataset (Table 1). Differences result partly from 
the larger grid box size than with the other data sets, and because “missing” grid boxes are excluded 
from the numerator and denominator of calculations. Figure  1c–d show the percentage of land area 
experiencing changes in major climate classes since 1950 based on the GISS dataset. The percent of area 
with a climate type change has exceeded the 5% significance level since the early 1990 s. About 6.5% 
of the global land surface has experienced shifts in major climate types by 2003, which is significantly 
greater than zero at the 5% significance level even if the variance of distribution of 54-year changed area 
percentage due to internal climate variability in Fig. 1d is doubled.

Changes in three indices of area, absolute latitude and elevation are listed in Table  1 and displayed 
in Supplementary Fig. S4 for the GISS dataset. The main results do not change noticeably for B-Area, 
E-Area, C-Latitude and D-Latitude. Trends of E-Latitude and E-Elevation are still significant, but 
increases in magnitudes are larger than for the UD dataset due to many “empty” grid boxes over the 
Antarctic and Greenland (Figs S4d–e). The trend of A-Elevation is not significant, which can still be 
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Figure 2. (a) Linear trends in areas of 5 major climate types for 1950–2003 using the UD dataset; asterisks 
denote significant trends at the 5% level. A positive trend of high-latitude (north of 55°N) D climate and 
a negative midlatitude (south of 55°N) D climate are over-plotted in blue with the net negative trend of D 
climate in dark blue. (b) and (c) are the same as (a), but for trends in average absolute latitude (positive 
indicates poleward) and elevation, respectively. (d) Map showing grid boxes with a major climate type in 
1950 that “disappeared” (changed to another type) by 2003. Grid boxes are 1° ×  1°. Colors are the same as 
in upper panels. (e) is the same as (d), but for “emerging” climate types (by 2003) in the same grid boxes. 
We generate five sub-panels (a–e) using Matlab software, and integrate them into this figure using Adobe 
Illustrator.
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explained by “empty” grid boxes over large areas of Brazil and Angola, while in the UD dataset, these 
areas contribute to the growth of A-Elevation. The emerging climate map based on the GISS dataset  
(Fig. S4e) is almost identical to that from the UD dataset (Fig. 2e).

These sensitivity test results suggest that significant changes in major climate types are robust and 
consistent among different datasets, so we use the UD dataset in the following attribution study.

Attribution of significant changes of climate type indices. To determine possible roles of exter-
nal anthropogenic and natural radiative forcings in the above climate shifts, the four indices are cal-
culated from the multi-model averaged historical CMIP5 simulations forced by observed atmospheric 
composition changes (including anthropogenic forcings such as greenhouse gases and sulfate aerosols 
and natural forcings such as volcanic eruptions and solar output changes, termed HIST-ALL), by green-
house gas forcings only (HIST-GHG), or by natural forcings only (HIST-NAT). Supplementary Table S1 
lists the selected model runs25, which use historical data ending 2005 (the last 15-year average is centered 
on 1998). Figure 1a shows multi-model ensemble means of the percentage of the world land area with a 
climate type change from 1950. By 1998, about 4.5%, 6.0% and 3.7% of the land surface has experienced 
shifts in major climate types in HIST-ALL, HIST-GHG and HIST-NAT simulations, respectively. Both 
HIST-ALL and HIST-GHG simulations fairly well reproduce the broad scale pattern of observed temper-
ature induced climate type changes in the UD dataset (Supplementary Figs S2f–g), including emergence 
of tropical climate over South-Southeast Asia, southeast Africa, Northwest tip of South America and the 
Southern Hemisphere, expansion of B climate in the midlatitude Northern Hemisphere, and a shift of E 
to D climate in high-latitudes.

In Fig.  1a,c, as discussed before, all curves show a rapid rise in the percentage of the world land 
area that has experienced a major climate type change until 1966 due to diminishing overlap of 15-year 
periods with 1950 (1943–1957), followed by either little or no consistent change, or a gradual rise. In 
1966, the observations and all simulation averages have changes in major climate types from 1950 in 
about 3.7% of the global land area. This slightly exceeds the mean (~3.1%) of a distribution as in Fig. 1b 
(which reflects average model-generated natural variability), but any trend included in this period does 
not reach 95% statistical significance.

For significant trends in Fig.  2, Fig.  3 shows corresponding trends for HIST-ALL, HIST-GHG, and 
HIST-NAT multi-model averages. For each major climate type, the HIST-ALL and HIST-GHG experi-
ments qualitatively reproduce all significant observed trends. A two-sided consistency test is conducted 
to determine whether the difference between the observed and any simulated trend is significantly  
different from zero at the 90% confidence level for each index of major climate type. The observed trends 
are consistent with those in the HIST-ALL run, except that the simulated B climate expansion is smaller 
than observed, which is explained by the finding that the models underestimate the observed precipita-
tion trends8,26. By consistent, we mean that the observed trend lies within the 90% confidence interval 
obtained by combining the uncertainty for the ensemble-mean forced model trend with the uncertainty 
estimated from control runs. HIST-NAT trends are small and have the opposite sign of all significant 
observed trends. In Fig. 3, increases in well mixed greenhouse gases (based on HIST-GHG) are the main 
driver of significant changes in major climate types, but HIST-GHG runs overstate most trends because 
they omit offsetting cooling factors such as sulfate aerosols.

A B C D D-North D-South E

UD

Area 0.4 4.8 − 1.7 − 0.7 2.2 −2.9 −2.8

Latitude 1.4 3.5 35.4 16.2 12.6

Elevation 3.0 2.0 − 3.8 − 3.1 14.3

CRU

Area 0.8 4.2 − 1.2 − 0.9 2.3 −3.2 −2.9

Latitude 4.1 2.8 45.6 17.1 9.8

Elevation 3.1 − 0.1 − 6.6 0.0 17.6

GISS (with missing boxes excluded from calculation)

Area 0.2 4.5 − 0.6 − 0.9 2.5 −3.4 −3.1

Latitude 2.6 4.8 32.4 19.4 31.6

Elevation 2.4 0.5 − 2.9 − 2.1 24.1

Table 1.  Linear trends in total area occupied by each major climate type, average absolute latitude of 
each major climate type; and averaged elevation of each major climate type in the UD, CRU and GISS 
datasets. Significant trends of these indices at the 5% statistical significance level are in bold. Units are 
105 km2 per decade for area, km per decade for latitude, and m per decade for elevation.
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Projections of changes of climate type indices. The increase of arid and tropical climates squeezes  
the areas occupied by C and D climates in the subtropics and midlatitudes. Although observations show 
insignificant contraction in C climate and expansion of A climate before 2010, projections (Supplementary 
Fig. S5) indicate acceleration of changes of areas for these two major climates after about 2006 to a sig-
nificant level by 2020, while significant expansion of B and shrinkage of midlatitude (south of 55°N) D 
climates continue under both the RCP 4.5 and RCP 8.5 scenarios. Associated with the projected expan-
sions of A and B climates, trends in average absolute latitude of these two climate types are projected to 
reach statistical significance by 2020. The poleward shifts in C and E climates are projected to accelerate 
in the next decades. Significant average elevation increases in tropical and polar climates are projected to 
continue by 2100, while the decreasing average elevation of the C climate is expected to reach statistical 
significance around 2020. These results suggest that the projected future temperature and precipitation 
changes are able to generate new emerging significant shifts in global major climate regimes. Some of 
these anthropogenic-induced emerging signals of climate types will be detected in the next decade.

Conclusions
Previous detection and attribution results are strengthened by the finding that changes in major 
Köppen climate types since 1950 have occurred worldwide and are almost entirely attributed to the 
observed anthropogenic increase in greenhouse gas concentrations. Model runs project accelerating 
anthropogenic-induced major climate type changes in the next decades. As the Köppen climate classifi-
cation links the Earth’s climates with the qualitative features of the vegetation, results here indicate that 
observed climate changes might already be causing significant impacts on vegetation in areas where the 
major climate class has changed, and model projections imply increasing future impacts.

Methods
This study uses updated thresholds11 for five major Köppen climate classes (30 subtypes are not of con-
cern here) based on climate data at a location, with tests performed in the following order to resolve 
conflicts: Arid (class B; MAP (mean annual precipitation, mm) < 10 ×  Pthreshold, where the aridity 
threshold Pthreshold =  2 ×  MAT (mean annual temperature, °C) if 70% of MAP occurs in winter; and 
Pthreshold =  2 ×  MAT +  28 (mm) if 70% of MAP occurs in summer; otherwise Pthreshold =  2 ×  MAT +  14 
mm), Tropical (class A; Tcold (temperature of the coldest month) ≥ 18 °C), Polar (class E; Thot (temperature 
of the hottest month) <  10 °C), Temperate (class C; Thot  > 10 °C and 0 < Tcold  < 18 °C), Continental (class 
D; Thot  > 10 °C and Tcold  ≤  0 °C).

For detection, attribution, and projection studies, monthly temperature and precipitation grids are 
downloaded from CMIP5 model runs25 using PI-CTL, HIST-ALL, HIST-GHG, HIST-NAT, RCP4.5, and 
RCP8.5 scenarios (Supplementary Table S1). Years are arbitrary for PI-CTL runs. HIST-ALL runs are 
driven by annual forcing values reconstructed from observed data (such as greenhouse gas concen-
trations and actual volcanic eruptions), and this study downloads 1940–2005 monthly grids for runs 
based on all forcing factors (HIST-ALL), greenhouse gases only (HIST-GHG), and natural factors only 
(HIST-NAT). RCP runs have specified annual forcings projected for 2006–2100, and each run is initiated 
from a HIST-ALL run.

Grid data pretreatment involves four steps: (1) The UD and CRU observational datasets and model 
outputs are regridded onto a 1° ×  1° grid to guarantee the same resolution, while the UD precipitation is 
also regridded onto a 2° ×  2° grid to match the temperature in the GISS dataset. (2) GISS monthly grid 
box anomalies minus the corresponding monthly averaged anomaly for 1940–1960 are first computed, 

Figure 3. Significant observed trends (black bars) marked with * in Fig. 2 and the corresponding 
simulated trends of indices for 1950–1998; yellow, red and blue bars denote HIST-ALL, HIST-GHG and 
HIST-NAT runs, respectively. Each error bar at the left of an observed trend is the standard deviation (σ ) 
of such trend estimated from 225 samples of 54-yr CMIP5 control runs and represents the natural variability 
of the observed or modeled trend. Simulated trends significantly different from the observation at the 5% 
level are marked with diamonds. The units are 2 ×  105 m2 decade−1 for area, 10 km decade−1 for latitude and 
5 m decade−1 for elevation indices.
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and are then added to the observational UD 1940–1960 grid box monthly climatology to produce 
monthly grid box temperature. (3) For the historical period (1940–2005) of the CMIP5 runs, anomalies 
relative to monthly climatology for 1940–1960 are similarly computed and are then added to the obser-
vational UD 1940–1960 monthly means. For the prediction period (2006–2100) of the CMIP5 runs, 
anomalies relative to a 15-year climatology (historical for 1996–2005 and RCP for 2006–2010) are added 
to the observational 1996–2010 UD monthly means. These downscaling steps ensure the consistency 
between observation and simulations. This is necessary since the Köppen-Geiger scheme is quite sen-
sitive to thresholds and models have problems in simulating the present-day distribution. (4) Third, a 
15-yr running smooth is applied to all variables in both observation (including the UD, CRU and GISS) 
and model (including PI-CTL) data to reduce the probabilistic influence of shorter-term climate vari-
ability. The 15-year averaging period is chosen as an optimal smoothing interval for Köppen or related 
classifications12, but results here are not highly sensitive to the length of the averaging period. There is a 
7 year loss on each side of the time interval, so the 1950 starting year represents the 1943–1957 average. 
Analysis periods end with 2003 (1996–2010) for observations, 1998 (1991–2005) for historical runs and 
2093 (2086–2100) for RCP runs.

The major climate zones (A - tropical, B - arid, C - temperate, D - cold, and E - polar) are then defined 
using the Köppen-Geiger scheme with updated criteria11. If tests are applied in the order B, A, E, C, D, 
simplified criteria as stated at the beginning of this section will always assign a unique climate class. Three 
indices are then computed to depict changes in climate regions. For each major climate type, the area 
index is the total area with that climate type, the latitude index is the global averaged absolute latitude 
(an increase is a poleward average movement of the climate type), and the elevation index is the average 
altitude. Since one climate type is assigned to each 1 ×  1° land grid box (111 ×  111 km at the equator), all 
grid boxes are weighted by the cosine of their latitude to ensure that equal areas are afforded equal weight. 
In Fig. 2b, the average latitude trend (° decade−1) is multiplied by 111 to be expressed as km decade−1.

To test whether an observed change/trend is significantly larger than internal variability, model out-
puts from pre-industrial control (PI-CTL) runs (pretreated as above, with 15-year averaging) are used to 
estimate the standard deviation (σ ) of each change/trend in a naturally fluctuating climate. Steps of 
estimation are as follows. (1) Major climate types are computed for each PI-CTL run. (2) A 54-year 
sample is taken every 54 years from the first year in each model run, giving a total of 225 sample time 
series. (3) For each sample, we calculate the percentage of the land surface experiencing climate shifts 
compared to the first year, as well as linear trends of the other three indices (changes in area, average 
absolute latitude, and average elevation of each climate type). Figure 1b shows the distribution of percent 
of land area with changed major climate types with 54-year time separation (from the first to the last 
year of each sample) for the 225 samples, and the darker gray shading in Fig. 1a shows the 95th percentile 
of percentages of land area with changed major climate types with time separations from 1 to 54 years. 
A change is significant with 95% confidence if the percentage of changed climate types exceeds the 95th 
percentile. For the other indices, a 1-sided significance test is used since trends of these variables gener-
ally follow normal distributions. An observed trend (OBS) is statistically significant at the 5% level if 
≥

σ
OBS  1.96. (4) For Supplementary Fig. S5, the estimated internal variability (standard deviation) for each 
variable for trends starting in 1950 and ending in all years through 2093 is obtained by following the 
same procedure with PI-CTL samples of length 2 to 144 years, and the 95% confidence range is shown 
by gray shading in each inset panel. (5) For Fig.  3, the natural variability of the observed or modeled 
trend (the standard deviation, σ ) is estimated from 225 samples of 54-yr CMIP5 control runs. We con-
duct a two-side consistency test to determine whether the difference between the observed and any 
simulated trend (|difference|) is significantly different from zero at the 90% confidence level at each 
region and grid box (|difference| ≥  1.64σ ( + / )Ne1 1  ), where we assume that observed and simulated 
trends from the control runs are approximately normally distributed with the same standard deviation 
(σ ), and Ne is the number of ensemble members in the last row of Supplementary Table S1. The forced 
trend of an index of climate type change is not significantly different from the observed trend if the 
observed trend lies within the 90% confidence interval obtained by combining the uncertainty for the 
ensemble-mean forced model trend with the uncertainty estimated from control runs.

The observed annual variance of the detrended surface temperatures and precipitation is compared 
with the variance in the control simulations (Supplementary Fig. S1) to evaluate the quality of the sim-
ulations of natural internal climate variability. Simple linear detrending is used to attempt to remove 
some of the possible anthropogenic signal in the observations. The variances of the detrended observed 
and control simulated temperatures of each model are calculated at each of the grid boxes. An F-test is 
utilized to determine whether the multi-model mean of simulated variance in control runs is significantly 
larger or smaller than the corresponding observed variance at each grid box at the 5% significance level.

References
1. Hegerl, G. C. et al. Understanding and Attributing Climate Change. Climate Change 2007: The Physical Science Basis. Contribution 

of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S. et al.) 
pp. 663–745 (Cambridge University Press, Cambridge, 2007).

2. Stott, P. A. et al. Detection and attribution of climate change: A regional perspective. WIREs Clim. Change. 1, 192–211 (2010).
3. Gillett, N. P., Arora, V. K., Flato, J. M., Scinocca, J. F. & von Salzen, K. Improved constraints on 21st-century warming derived 

using 160 years of temperature observations. Geophys. Res. Lett., 39, L01704 (2012).



www.nature.com/scientificreports/

8Scientific RepoRts | 5:13487 | DOi: 10.1038/srep13487

4. Knutson, T. R., Zeng, R. & Wittenberg, A. T. Multi-model assessment of regional surface temperature trends. J. Clim., 26, 
8709–8743 (2013).

5. Bindoff, N. L. et al. Detection and Attribution of Climate Change: from Global to Regional. Climate Change 2013: The Physical 
Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 
(eds. Stocker, T. F. et al.) pp. 867–952 (Cambridge University Press, Cambridge, 2013).

6. Zhang, X. B. et al. Detection of human influence on twentieth-century precipitation trends. Nature. 448, 461–465 (2007).
7. Min, S.-K., Zhang, X. B. & Zwiers, F. Human-induced Arctic moistening. Science, 320, 518–520 (2008).
8. Noake, K., Polson, D., Hegerl, G. & Zhang, X. B. Changes in seasonal land precipitation during the latter twentieth‐century. 

Geophys. Res. Lett. 39, L03706 (2012).
9. Polson, D., Hegerl, G. C., Zhang, X. B. & Osborn, T. J. Causes of robust seasonal land precipitation changes. J. Clim. 26, 6679–6697 

(2013).
10. Köppen, W. Das geographisca system der Klimate. In: Handbuch der Klimatologie. 1 (eds. Köppen, W. & Geiger, G.) pp. 1–44 

(C. Gebr, Borntraeger, 1936).
11. Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydro. Earth 

Sys. Sci. 11, 1633–1644 (2007).
12. Fraedrich, K., Gerstengarbe, F. W. & Werner P. C. Climate shifts during the last century. Climatic Change 50, 405–417 (2001).
13. Wang, M., & Overland, J. E. Detecting Arctic climate change using Köppen climate classification. Climatic Change 67, 43–62 

(2004).
14. Gnanadesikan, A. & Stouffer, R. J. Diagnosing atmosphere-ocean general circulation model errors relevant to the terrestrial 

biosphere using the Köppen climate classification. Geophys. Res. Lett. 33, L22701 (2006).
15. De Castro, M., Gallardo, C., Jylha, K. & Tuomenvirta, H. The use of a climate-type classification for assessing climate change 

effects in Europe from an ensemble of nine regional climate models. Climatic Change 81, 329–341 (2007).
16. Diaz, H. F. & Eischeid, J. K. Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophys Res Lett 

34, L18707 (2007).
17. Roderfeld, H. et al. Potential impact of climate change on ecosystems of the Barents Sea Region. Climatic Change 87, 283–303 

(2008).
18. Rubel, F. & Kottek, M. Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate 

classification. Meteorol. Z. 19, 135–141 (2010).
19. Mahlstein, I., Daniel, J. S. & Solomon, S. Pace of shifts in climate regions increases with global temperature. Nature Clim. Change 

3, 739–743 (2013).
20. Feng, S. et al. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations. 

Global Planet. Change 112, 41–52 (2014).
21. Legates, D. R. & Willmott, C. J. Mean seasonal and spatial variability in global surface air temperature. Theor. Appl. Climatol. 41, 

11–21 (1990).
22. Legates, D. R. & Willmott, C. J. Mean seasonal and spatial variability in gauge‐corrected, global precipitation. Int. J. Climatol. 10, 

111–127 (1990).
23. Harris, I. et al. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 

623–642 (2014).
24. Hansen, J. R., Ruedy, M. & Sato, K. Lo: Global surface temperature change. Rev. Geophys. 48, RG4004, doi: 10.1029/2010RG000345 

(2010).
25. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 

485–498 (2012).
26. Liu, C., Allan, R. P. & Huffman, G. J. Co-variation of temperature and precipitation in CMIP5 models and satellite observations. 

Geophys. Res. Lett. 39, L13803 (2012).

Acknowledgements
We acknowledge all participants of CMIP5 for producing and making available model outputs. We 
also acknowledge NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, for providing UD and GISS 
datasets on their Web site at http://www.esrl.noaa.gov/psd/, and http://www.cru.uea.ac.uk/cru/data/
hrg/#current for providing CRU_TS_ 3.22 data. This work is funded by the National Key Scientific 
Research Plan of China (Grant 2012CB956002) and the National Natural Science Foundation of China 
(Grant 41075052). This work is also supported by the Jiangsu Collaborative Innovation Center for 
Climate Change.

Author Contributions
Q.W. designed the experiments, analyzed the data and wrote the paper, and D.C. collected and processed 
all data, performed the statistical analyses and contributed to the manuscript. Both authors discussed the 
results and commented on the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Chan, D. and Wu, Q. Significant anthropogenic-induced changes of climate 
classes since 1950. Sci. Rep. 5, 13487; doi: 10.1038/srep13487 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.esrl.noaa.gov/psd/
http://www.cru.uea.ac.uk/cru/data/hrg/#current for providing CRU:TS_ 3.22 data.
http://www.cru.uea.ac.uk/cru/data/hrg/#current for providing CRU:TS_ 3.22 data.
http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Significant anthropogenic-induced changes of climate classes since 1950
	 
	Observed changes of climate type indices from the UD dataset. 
	Sensitiveness to different observed datasets. 
	Attribution of significant changes of climate type indices. 
	Projections of changes of climate type indices. 

	Conclusions
	Methods
	Acknowledgements
	Author Contributions
	Figure 1.  (a) Percentage of world land area with a climate type change in each year compared to 1950 from UD (black solid line) and CRU (black dashed line) observations, and HIST-ALL (yellow), HIST-GHG (red), and HIST-NAT (blue) runs.
	Figure 2.  (a) Linear trends in areas of 5 major climate types for 1950–2003 using the UD dataset asterisks denote significant trends at the 5% level.
	Figure 3.  Significant observed trends (black bars) marked with * in Fig.
	Table 1.   Linear trends in total area occupied by each major climate type, average absolute latitude of each major climate type and averaged elevation of each major climate type in the UD, CRU and GISS datasets.



 
    
       
          application/pdf
          
             
                Significant anthropogenic-induced changes of climate classes since 1950
            
         
          
             
                srep ,  (2015). doi:10.1038/srep13487
            
         
          
             
                Duo Chan
                Qigang Wu
            
         
          doi:10.1038/srep13487
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep13487
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep13487
            
         
      
       
          
          
          
             
                doi:10.1038/srep13487
            
         
          
             
                srep ,  (2015). doi:10.1038/srep13487
            
         
          
          
      
       
       
          True
      
   




