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Mapping tree density at a global scale
T. W. Crowther1, H. B. Glick1, K. R. Covey1, C. Bettigole1, D. S. Maynard1, S. M. Thomas2, J. R. Smith1, G. Hintler1, M. C. Duguid1,
G. Amatulli3, M.-N. Tuanmu3, W. Jetz1,3,4, C. Salas5, C. Stam6, D. Piotto7, R. Tavani8, S. Green9,10, G. Bruce9, S. J. Williams11,
S. K. Wiser12, M. O. Huber13, G. M. Hengeveld14, G.-J. Nabuurs14, E. Tikhonova15, P. Borchardt16, C.-F. Li17, L. W. Powrie18,
M. Fischer19,20, A. Hemp21, J. Homeier22, P. Cho23, A. C. Vibrans24, P. M. Umunay1, S. L. Piao25, C. W. Rowe1, M. S. Ashton1,
P. R. Crane1 & M. A. Bradford1

The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide
the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is
approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately
1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate
regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local
tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our
projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has
fallen by approximately 46% since the start of human civilization.

Forest ecosystems harbour a large proportion of global biodiversity,
contribute extensively to biogeochemical cycles, and provide count-
less ecosystem services, including water quality control, timber
stocks and carbon sequestration1–4. Our current understanding of
the global forest extent has been generated using remote sensing
approaches that provide spatially explicit values relating to forest
area and canopy cover3,5,6. Used in a wide variety of global models,
these maps have enhanced our understanding of the Earth sys-
tem3,5,6, but they do not currently address population numbers,
densities or timber stocks. These variables are valuable for the mod-
elling of broad-scale biological and biogeochemical processes7–9

because tree density is a prominent component of ecosystem struc-
ture, governing elemental processing and retention rates7,9,10, as well
as competitive dynamics and habitat suitability for many plant and
animal species11–13.

The number of trees in a given area can also be a meaning-
ful metric to guide forest management practices and inform
decision-making in public and non-governmental sectors14,15. For
example, international afforestation efforts such as the ‘Billion
Trees Campaign’, and city-wide projects including the numerous
‘Million Tree’ initiatives around the world have motivated civil
society and political leaders to promote environmental stewardship
and sustainable land management by planting large numbers of
trees14,16,17. Establishing targets and evaluating the proportional
contribution of such projects requires a sound baseline understand-
ing of current and potential tree population numbers at regional
and global scales16,17.

The current estimate of global tree number is approximately
400.25 billion18. Generated using satellite imagery and scaled based
on global forest area, this estimate engaged policy makers and envir-
onmental practitioners worldwide by suggesting that the ratio of
trees-to-people is 61:1. This has, however, been thrown into doubt
by a recent broad-scale inventory that used 1,170 ground-truthed
measurements of tree density to estimate that there are 390 billion
trees in the Amazon basin alone19.

Mapping tree density
Here, we use 429,775 ground-sourced measurements of tree density
from every continent on Earth except Antarctica to generate a global
map of forest trees. Forested areas are found in most of Earth’s
biomes, even those as counterintuitive as desert, tundra, and grassland
(Fig. 1a, b). We generated predictive regression models for the
forested areas in each of the 14 biomes as defined by The Nature
Conservancy (http://www.nature.org). These models link tree density
to spatially explicit remote sensing and geographic information sys-
tems (GIS) layers of climate, topography, vegetation characteristics
and anthropogenic land use (see Extended Data Table 1). Following
almost all of the collected data sources, we define a tree as a plant with
woody stems larger than 10 cm diameter at breast height (DBH)19.

Incorporating plot-level measurements from more than 50 coun-
tries, the measured tree density values were inherently variable within
and among biomes (Figs 1 and 2). However, the large number of tree
density measurements ensured that the confidence in our mean (and
total) estimates is high (Fig. 3). Furthermore, the scale of these data
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ensures that our modelled estimates are unlikely to be influenced
significantly by recent forest loss, reforestation or natural forest regen-
eration, which are responsible for a net global change of ,1% of the

global forest area each year3. Biome-level validation estimates indicate
that our models have high precision when predicting the mean tree
densities of omitted validation plots (Fig. 3a). Although the accuracy
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Figure 1 | Map of data points and raw biome-level forest density data.
a, Image highlighting the ecoregions (shapefiles provided by The Nature
Conservancy (http://www.nature.org)) from which the 429,775 ground-
sourced measurements of tree density were collected. Shading indicates the

total number of plot measurements collected in each ecoregion. A global forest
map was overlaid in green to highlight that collected data span the majority
of forest ecosystems on a global scale. b, The median and interquartile range of
tree density values collected in the forested areas of each biome.
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Figure 2 | Heat plots showing the relationships
between predicted and measured tree density
data. a–l, Predictions were generated using
generalized linear models (n 5 429,775). Diagonal
lines indicate 1:1 lines (perfect correspondence)
between predicted and observed points, scaled to
the kilometre level. Colours indicate the proportion
of data points from that biome that fall within each
pixel. Biomes with a greater number of plot
measurements have greater variability but higher
confidence in the mean estimates, highlighting the
trade-off between broad-scale precision and fine-
scale accuracy. Axes are log-transformed to
account for exceptionally high variability in tree
density.
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of our models is limited at the level of an individual hectare, the
precision of the mean density estimates is high (640 trees ha21)
beyond a threshold of ,200 plots (Fig. 3b).

Global-level and biome-level patterns
Together, the biome-level models provide the first spatially continuous
map of global tree densities at a 1-km2 (30 arc-seconds) resolution
(Fig. 4a). Based on this map, we estimate that the global number of trees
is approximately 3.04 trillion (60.096 trillion, 95% confidence intervals
(CI)). An order of magnitude higher than the previous global estimate18,
the scale of our projection is consistent with recent large-scale inventories

in Europe, North America and the Amazon basin19 (Fig. 4d). With a
human population of 7.2 billion, our estimate of global tree density
revises the ratio of trees per person from 61:1 to 422:1.

At the biome-level, the highest tree densities exist in forested
regions of the Boreal and Tundra zones (Fig. 1b). In these northern
latitudes, limited temperature and moisture lead to the establishment
of stress-tolerant coniferous tree species that can reach the highest
densities on Earth (Fig. 1). However, the tropical regions contain a
greater proportion of the world’s forested land. A total of 42.8% of the
planet’s trees exist in tropical and subtropical regions, with another
24.2% and 21.8% in boreal and temperate biomes, respectively
(Fig. 4a).

Within-biome trends
Our models also provide mechanistic insights into potential con-
trols on tree density within biomes (Fig. 5). For example, various
climatic parameters correlate with mean forest density within all
ecosystem types. Tree density generally increases with temperature
(mean annual temperature and temperature seasonality) and mois-
ture availability (precipitation regimes, evapotranspiration or arid-
ity). These patterns are consistent with previous broad-scale tree
inventory studies and support the idea that, within ecosystem
types, moist, warm conditions are generally optimal for tree
growth11,12.

Given the generally positive effects of moisture availability and
warmth on tree density within biomes, the negative relationships
observed in some regions may seem surprising (Fig. 5). This high-
lights the complex suite of population- and community-level selec-
tion pressures that can obscure the expected effects of climate across
landscapes. For example, in colder (boreal or tundra) biomes,
increasing moisture levels can cause hydric and permafrost condi-
tions in lower lying topographies, which then limit nutrient avail-
ability for tree development20. In addition, current and historical
anthropogenic land use decisions have the potential to drive these
relationships in several regions. The negative relationships between
tree density and moisture availability in flooded grasslands and trop-
ical dry forests are, for example, likely to be driven by preferential use
of moist, productive land for agriculture21. As a result, forest ecosys-
tems are often relegated to drier regions, reversing the expected
within-biome relationships between moisture availability and tree
density. Such effects will vary among countries, depending on
human population densities, alternative resource availability and
socio-economic status22,23.

Along with these indirect effects of human activity, the direct
effect of human development (percentage developed and managed
land)6 on tree density represented the only common mechanism
across all biomes (Fig. 5). The negative relationships between tree
density and anthropogenic land use exemplify how humans contend
directly with natural forest ecosystems for space. Whereas the nega-
tive effect of human activity on tree numbers is highly apparent at
local scales, the present study provides a new measure of the scale of
anthropogenic effects, relative to other environmental variables.
Current rates of global forest cover loss are approximately
192,000 km2 each year3. By combining our tree density information
with the most recent spatially explicit map of forest cover loss over
the past 12 years3, we estimate that deforestation, forest manage-
ment, disturbances and land use change are currently responsible
for a gross loss of approximately 15.3 billion trees on an annual basis.
Although these rates of forest loss are currently highest in tropical
regions3, the scale and consistency of this negative human effect
across all forested biomes highlights how historical land
use decisions have shaped natural ecosystems on a global scale.
Using the projected maps of current and historic forest cover provided
by the United Nations Environment Programme (http://geodata.
grid.unep.ch), our map reveals that the global number of trees has fallen
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Figure 3 | Validation plots for biome-level predictions. a, Biome-level
regression models predict the mean values of the omitted validation plot
measurements in 12 biomes. Overall, the models underestimated mean tree
density by ,3% (slope 5 0.97) but this difference was not statistically
significant (P 5 0.51). Bars show 6 one standard deviation for the predicted
mean and the grey area represents the 95% confidence interval for the mean.
The values plotted here represent mean densities for the plot measurements
(that is, for forested ecosystems), rather than those predicted for each entire
biome. b, The standard deviation of the predicted mean values as a function
of sample size. As sample size increases, the variability of the predicted mean
tree density reaches a threshold, beyond which an increase in sample size
results in a minimal increase in precision. Standard deviations were
calculated using a bootstrapping approach (see Methods), and smooth curves
were modelled using standard linear regression with a log–log
transformation.
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by approximately 45.8% since the onset of human civilization (post-
Pleistocene).

Discussion
The global map of tree density can facilitate ongoing efforts to under-
stand biogeochemical Earth system dynamics3,6,7,9 by incorporating
ecosystem features that relate to elemental cycling rates9,10. For
example, tree abundance can help to explain some of the variation
in carbon storage and productivity within ecosystem types7,9, but the
strength of these effects remain untested across biomes8. We assessed
the relationship between tree density and plant carbon storage at a
global scale by regressing our plot-level tree counts against modelled
estimates of plant biomass carbon in those sites24. This revealed a
positive effect of tree density on plant carbon storage (P , 0.001).
However, the strength of the relationship is weak (r2 5 0.14), reflect-
ing the vast array of local ecological forces that can obscure such
global trends. For example, the effect of tree density is likely to interact
strongly with tree size. Larger trees contain the greatest proportion of
carbon in woodlands25, but the highest tree densities within a given
ecosystem type are often associated with young or recovering forests

characterized by many small trees13,20. A thorough understanding of
total vegetative carbon storage requires information about both the
size and the number of individual trees.

A dense forest environment is a fundamentally different ecosystem
from a sparse one and this influences a vast array of biotic and abiotic
processes10–12. Current remote sensing tools capture some, but not all
of this information. The tree density layer that we provide can there-
fore augment the currently available layers by providing unique
insights into ecological dynamics that are not represented by esti-
mates of forest cover or biomass3,5,6. It can inform biodiversity esti-
mates and species distribution models by capturing perceivable
environmental characteristics that determine habitat suitability for
a wide variety of plants and animals11–13. Baseline estimates of tree
populations are also critical for projecting population- and commun-
ity-level tree demographics under current and future climate change
scenarios26, and for guiding local, national, and international refor-
estation/afforestation efforts14–17. Finally, by allowing us to compre-
hend the global forest extent in terms of tree numbers, this map
contributes to our fundamental understanding of the Earth’s terrest-
rial system.
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Figure 4 | The global map of tree density at the 1-km2 pixel (30 arc-seconds)
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validation for our broad-scale estimates of total tree number. This shows the
relationship between our predicted tree estimates and reported totals for
regions with previous broad-scale tree inventories (see Methods for details).
The straight line and the dotted line are the predicted best fit line and the 1:1
line, respectively.
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Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Figure 5 | Standardized coefficients for the variables included in final
biome-level regression models. Coefficients represent relative per cent
change in tree density for one standard deviation increase in the variable. Red
and blue circles indicate negative and positive effects on tree density,
respectively. Circle size indicates the magnitude of effects. All layers are
available at the global scale. Human development 5 per cent developed and
managed land; LAI 5 leaf area index; EVI 5 enhanced vegetation index; EVI:
ASM 5 angular second moment of EVI; EVI: contrast 5 contrast of EVI; and
EVI: dissimilarity 5 dissimilarity of EVI (see Extended Data Table 1).
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METHODS
Data collection and standardisation. Plot-level data were collected from inter-
national forestry databases, including the Global Index of Vegetation-Plot
Database (GIVD http://www.givd.info), the Smithsonian Tropical Research
Institute (http://www.stri.si.edu), ICP-Level-I plot data which covers most of
Europe (http://www.icp-forests.org), and National Forest Inventory (NFI) ana-
lyses from 21 countries, including the USA (http://fia.fs.fed.us/) and Canada
(https://nfi.nfis.org/index.php). This information was supplemented with data
from peer-reviewed studies reporting large international inventories published
in the last 10 years (collected using ISI Web of Knowledge, Google Scholar and
secondary references)19,27,28.

We only included density estimates where individual trees met the criterion of
$10 cm diameter at breast height (DBH). Although NFI databases can vary
slightly in their definition of a mature tree (for example, the US Forest Service
Forest Inventory and Analysis (FIA)29 defines a tree as a plant with woody stems
larger than 12.7 DBH) the vast majority of sources use 10 cm as the DBH cut-off.
Indeed, this was the only size class provided by all broad-scale inventories
(including the FIA), so density estimates at other DBH values were excluded.
This provided a total of 429,775 measurements of forest tree density (each
generated at the hectare scale) that were then linked to spatially explicit
remote-sensing data and GIS variables to explore the patterns in forest tree
density at a global scale. The scale of our plot data (in terms of number and
distribution of plots) ensured that any plot location uncertainty or minor
changes in global forest area are unlikely to alter mean values or modelled
estimates.
Acquisition and preprocessing of spatial data. For predictive model develop-
ment, we selected 20 geospatial covariates from a larger pool of potential covari-
ates based on uniqueness, spatial resolution and ecological relevance (Extended
Data Table 1). Covariates were derived through satellite-based remote sensing
and ground-based weather stations, and can be loosely grouped into one of four
categories: topographic, climatic, vegetative or anthropogenic. Topographic cov-
ariates included elevation, slope, aspect (as northness and eastness), latitude (as
absolute value of latitude) and a terrain roughness index (TRI). Climatic covari-
ates included annual mean temperature, temperature annual range, annual pre-
cipitation, precipitation of driest month, precipitation seasonality (coefficient of
variation), precipitation of driest quarter, potential evapotranspiration per hec-
tare per year, and indexed annual aridity. Vegetative covariates included,
enhanced vegetation index (EVI), leaf area index (LAI), dissimilarity, contrast,
and angular second moment. We also included a single anthropogenic covariate:
proportion of urban and/or developed land cover (see Extended Data Table 1).

Several covariates bear special mention. Moving-window analyses were applied
to an EVI derived from a multi-year composite of moderate resolution imaging
spectroradiometer (MODIS) imagery. From the result, we extracted three sec-
ond-order textural covariates that reflect the heterogeneity of vegetation, inten-
ded to capture difference in vegetative structure. These include angular second
moment (the orderliness of EVI among adjacent pixels), contrast (the exponen-
tially weighted difference in EVI between adjacent pixels: see http://earthenv.org
for details), and dissimilarity (difference in EVI between adjacent pixels). Terrain
roughness index (the mean of absolute differences between a cell and its adjacent
neighbours) was derived from aggregated Global Multi-Resolution Terrain
Elevation Data of 2010. Terrain roughness index was computed using the eight
neighbouring pixels, while the others were computed using the four neighbouring
pixels located at 0u, 45u, 90u, 135u (see http://earthenv.org and ref. 36 for details).

We preprocessed all spatial covariates using ArcMap 10.1 (ESRI, Redlands,
CA, 2012) and RStudio 0.97.551 (RStudio, 2012). All covariates were reprojected
to the interrupted Goode Homolosine equal-area coordinate system (which max-
imises spatial precision by amalgamating numerous region-specific equal-area
projections) to optimize the areal accuracy of our final figures30. These were then
resampled to match the coarsest resolution used during analysis (nominal 1 km2

pixels), and spatially coregistered using nearest neighbour resampling where
necessary.

To account for broad-scale differences in vegetation types, we developed spatial
models at the biome scale. Individual predictive models were generated within
each of 14 broad ecosystem types (delineated by the Nature Conservancy http://
www.nature.org) to improve the accuracy of estimates.
Statistical modelling. We used generalized linear models to generate predictive
maps of tree numbers within forested ecosystems for each biome. This approach
also enabled us to explore the mechanisms potentially governing patterns in
forest tree density within regions (Fig. 5). Due to the inherently interactive nature
of climate, soil and human impact factors across the globe, we predicted that there
would be pronounced non-independence within the full suite of biophysical
variables extracted from the compiled GIS layers. To account for this colinearity,
we performed ascendant hierarchical clustering using the hclustvar function in

R’s ClustOfVar package31 in each biome-level model. This analysis splits the
variables into different clusters (similar to principal components) in which all
variables correlate with one another. A single best ‘indicator’ variable is then
selected from each cluster, based on squared loading values representing the
correlation with the central synthetic variable of each cluster (that is, the first
principal component of a PCAmix analysis). This set of ‘best’ indicator variables
for each biome was then included in all subsequent models used to estimate
controls on forest tree density.

Using the resulting set of variables, we constructed generalized linear models
with a negative binomial error structure (to account for count data that could not
extend below zero) for each biome (Extended Data Figs 1, 2 and 3) and performed
a multi-model dredging using the dredge function in R’s MuMIn package32. This
function constructs all possible candidate sub-models nested within the global
model, identifies the most plausible subset of models for each data set, and then
ranks them according to corrected Akaike Information Criterion (AICc) values
and AIC likelihood weights (AICcw). We derived covariates, coefficients, and
variance-covariance matrices for biome-level models through weighted model
averaging the dredged model results with cumulative AIC weights at least equal to
0.95 (ref. 33). Given the inherent sampling bias present in our plot data (tree
density estimates were only collected in forested ecosystems and non-forested
regions are under-represented), our modelling approach was used to generate
predictive estimates of forest tree density, and these estimates were subsequently
scaled based on the total area of forested land in each pixel (see spatial modelling
for details).
Model validation and testing. We assessed the model fit by investigating the
bias and precision present when predicting mean tree density across an
aggregate number of plots. This approach allowed us to test how many
plots are required to ensure that the predicted mean (or total) forest density
has reasonable bias and precision. 20% of the plots within each biome were
randomly omitted before model fitting to serve as an independent data set for
model testing. Initial model validation was conducted using the biome-spe-
cific regression models (obtained from the remaining 80% of the data) to
predict the tree density for each omitted plot. The mean predicted tree den-
sity of the omitted data was then regressed against the mean observed tree
density of the omitted data for each biome (Fig. 2). In addition, a bootstrap-
ping algorithm was used to quantify the standard deviation of the mean
prediction as a function of sample size following ref. 34. For each biome,
we generated empirical bootstrap estimates of the standard deviation of the
predicted mean using random samples drawn from the withheld validation
plots. Specifically, for each biome a bootstrap sample of size n was selected,
with replacement, from the omitted data in that biome. The fitted regression
model for that biome (based on the 80% retained data) was used to predict the
tree density of each point, and the mean of the n samples was calculated. This
process was repeated 10,000 times for each sample size (n 5 10, 20, …, 500)
and in each case the empirical standard deviation of the 10,000 sample mean
was calculated and plotted (Fig. 2). Where the number of plot records in a
biome fell below the sample size threshold identified through bootstrapping,
we used models from the most similar biome available (in terms of phylo-
genetic relatedness of the dominant tree species and mean tree density from
the few plot values collected). This was the case for the two smallest biomes:
‘mangroves’ (0.23% of land surface) and ‘tropical coniferous’ (0.46% of land
surface) forests, which used models from ‘tropical moist’ and ‘temperate
coniferous’, respectively.
Spatial modelling. Following model averaging and bootstrapping, we applied the
final negative binomial regression equations used in bootstrapping to pixel-level
spatial data at the biome level. Regressions were run in a map algebra framework
wherein equation intercepts and coefficients were applied independently to each
pixel of our coregistered global covariates to produce a single map of forest tree
density on a per-hectare scale. We then scaled our per-hectare forest density
estimates to the 1-km2 scale based on the total area of forested land within each
pixel, as estimated by the global 1-km consensus land cover data set for 2014
(ref. 6). This process was then validated using an older (2013) data set that used
fine-scale (30 m) forest cover information3, which revealed equivalent total tree
counts. By multiplying our predicted forest density by the area of forest, we
ensured that we did not overestimate tree densities in non-forested sites. From
the resulting maps, summary statistics (mean tree density, total tree number)
were derived for each polygonal area of interest. The variances of the global and
biome-specific totals were calculated using a Taylor series approximation to
account for the log-link negative binomial regression function and correlation
among the regression-based predicted values35.

By generating models at the biome-level, we were able to account for broad-
scale differences in vegetation types between biomes, while maintaining high
precision of our mean (and total) estimates at the global scale (due to the high
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number of plot measurements within biomes). However, biome-level models are
limited in their accuracy when predicting tree density at fine-scales, which might
ultimately have the potential to alter final numbers. We therefore constructed
models within each of 813 global ecoregions (delineated by the Nature
Conservancy http://www.nature.org) as a validation for the first biome-level
approach. We generated models and estimated tree numbers using exactly the
same approach as for the biome-level models. Total, and biome-level, tree esti-
mates did not differ significantly (P , 0.05) from those generated using the
biome-level models (Extended Data Fig. 4).
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35. Ståhl, G. et al. Model-based inference for biomass estimation in a LiDAR sample

survey in Hedmark County, Norway. Can. J. For. Res. 41, 96–107 (2011).
36. Tuanmu, M.-N. & Jetz, W. A global, remote sensing-based characterization of

terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob.
Ecol. Biogeogr. http://dx.doi.org/10.1111/geb.12365 (2015).

ARTICLE RESEARCH

G2015 Macmillan Publishers Limited. All rights reserved

http://www.nature.org
http://fia.fs.fed.us/
http://fia.fs.fed.us/
http://www.jstatsoft.org/v50/i13
https://cran.r-project.org/web/packages/MuMIn/index.html
https://cran.r-project.org/web/packages/MuMIn/index.html
http://dx.doi.org/10.1111/geb.12365


Extended Data Figure 1 | Histogram of the collected measurements of forest tree density in each biome around the world (n 5 429,775). The red line and the
blue dotted lines indicate the mean and median for the collected data, respectively. Data in each biome fitted a negative binomial error structure.
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Extended Data Figure 2 | Histogram of the predicted forest tree density
values for the locations that density measurements were collected in each
biome around the world (n 5 429,775). The red line and the blue dotted lines

indicate the mean and median for the collected data, respectively. As our
models were based on mean values, the majority of points fall on or close to the
mean values in each biome.
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Extended Data Figure 3 | Histogram of the total predicted forest tree
density values for each pixel within each biome around the world
(n 5 429,775). This illustrates the spread of pixels throughout each biome, and

highlights that our map accounts for the sampling bias in tree density plots
(for example, although we had no zero values in our desert plots, the vast
majority of desert pixels contain no trees).
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Extended Data Figure 4 | Comparison between approaches to generate
the global tree density map. The initial map was generated using 14 biome-
level models (biomes delineated by The Nature Conservancy http://
www.nature.org) to account for broad-scale variations in terrestrial vegetation
types. With several thousand plot-level density measurements in most
biomes, this approach provided highly accurate estimates at the global scale.
However, to improve precision at the local scale, we also generated a map using

ecoregion-scale models. Separate models were generated within each of 813
global ecoregions (also delineated by The Nature Conservancy to reflect
smaller-scale vegetation types) using exactly the same statistical approach (see
Methods). The same 429,775 data points were used to construct each map.
Biome-level and ecoregion-level maps provide total tree estimates of 3.041 and
3.253 trillion trees, respectively.
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Extended Data Table 1 | Estimates of the total tree number for each of the biomes that contain forested land, as delineated by The Nature
Conservancy (http://www.nature.org)
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