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ABSTRACT

In‐channel large woody debris (LWD) promotes quality aquatic habitat through sediment sorting, pool scouring and in‐stream nutrient retention
and transport. LWD recruitment occurs by numerous ecological and geomorphic mechanisms including channel migration, mass wasting and
natural tree fall, yet LWD sourcing on the watershed scale remains poorly constrained.We developed a rapid and spatially extensive method for
using light detection and ranging data to do the following: (i) estimate tree height and recruitable tree abundance throughout a watershed;
(ii) determine the likelihood for the stream to recruit channel‐spanning trees at reach scales and assess whether mass wasting or channel
migration is a dominant recruitment mechanism; and (iii) understand the contemporary and future distribution of LWD at a watershed scale.We
utilized this method on the 78‐km‐long Narraguagus River in coastal Maine and found that potential channel‐spanning LWD composes
approximately 6% of the valley area over the course of the river and is concentrated in spatially discrete reaches along the stream, with 5 km of
the river valley accounting for 50% of the total potential LWD found in the system.We also determined that 83% of all potential LWD is located
on valley sides, as opposed to 17% on floodplain and terrace surfaces. Approximately 3% of channel‐spanning vegetation along the river is
located within one channel width of the stream. By examining topographic and morphologic variables (valley width, channel sinuosity, valley‐
side slope) over the length of the stream, we evaluated the dominant recruitment processes along the river and often found a spatial disconnect
between the location of potential channel‐spanning LWD and recruitment mechanisms, which likely explains the low levels of LWD currently
found in the system. This rapidmethod for identification of LWD sources is extendable to other basins andmay prove valuable in locating future
restoration projects aimed at increasing habitat quality through wood additions. Copyright© 2011 John Wiley & Sons, Ltd.
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INTRODUCTION

The presence of large woody debris (LWD) in streams is
associatedwith an array of positive ecological impacts (Gurnell
et al., 2002). Studies have shown wood to be an important
mechanism in promoting stream habitat heterogeneity through
sediment storage and sorting (Beschta, 1979; Assani and Petit,
1995; Thompson, 1995), pool formation (Montgomery et al.,
1995; Abbe and Montgomery, 1996) and in‐stream nutrient
transport (Bilby, 2003). The influence of in‐channel wood on
these physical processes can translate to critical habitat for
numerous organisms, such as salmonid fishes (Fausch and
Northcote, 1991; Sundbaum and Näslund, 1997). Owing to the
importance of LWD as a habitat‐forming agent, a large
literature has developed concerning the ecological role of in‐
stream wood (Gregory et al., 2003) and the physical
*Correspondence to: A. Kasprak, Department of Watershed Sciences, Utah
State University, Logan, Utah 84322, USA.
E‐mail: akasprak@aggiemail.usu.edu
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mechanisms that promote recruitment of wood from riparian
and hillslope forests (Benda et al., 2003). The view of wood in
streams today lies in contrast to past perceptions that streams
needed to be freed from obstruction (Erskine andWebb, 2003),
to the degree that projects are underway to add wood and/or
artificial wood structures to rivers in hopes of fostering the
return of high‐quality fluvial habitat (Cederholm et al., 1997;
Floyd et al., 2009; Johnson, 2009).
The delivery of wood to streams has been studied

extensively, with particular regard to the Pacific Northwest,
and has been shown to occur by several processes (Benda
et al., 2003). Trees can be sourced to streams through hillslope
failure (Swanson andLienkaemper, 1978;May andGresswell,
2003a), wind throw (Lienkaemper and Swanson, 1987;
Hairston‐Strang and Adams, 1998) and bank undercutting
(Swanson and Lienkaemper, 1978; Webb and Erskine, 2003).
Numerous processes can accelerate wood recruitment, such as
fire and insect outbreaks (Bragg, 2000), which result in large‐
scale tree mortality. The distance of trees from the channel has
been shown to be an important factor in LWD delivery



A. KASPRAK ET AL.
(McDade et al., 1990), with those trees closer to streams being
preferentially recruited. The distribution of wood in streams
has been further shown to reflect a balance between the amount
of wood recruited and the ability of the stream to transport it
and form wood jams (Wohl and Jaeger, 2008; Wohl et al.,
2010). This longitudinal variation in wood distribution can be
due to controlling factors such as channel gradient, with wood
being redistributed from higher to lower energy reaches
(Magilligan et al., 2008; Fisher et al., 2010).
Maintaining the natural state of streams and restoring

previously disturbed rivers are emerging as important goals of
fluvial geomorphology. Yet recent work has indicated that the
rate at which such projects are proceeding outpaces our
scientific knowledge of fluvial and riparian dynamics
(Kondolf, 1995; Wohl et al., 1995; Bernhardt et al., 2005;
Snyder et al., 2009; Wilkins and Snyder, 2010). Although the
management of such dynamics at the watershed scale may be
a beneficial approach for habitat restoration (May and
Gresswell, 2003a), such a basin‐scale understanding in the
case of LWD sources and recruitment has not been achieved
(Seo et al., 2010) despite the increasing popularity of LWDas a
restoration tool. Watershed‐scale analyses, although possible,
may be complicated by the time‐intensive methods required
(Marcus et al., 2002; Fremier et al., 2010) or the complex
nature of attributes such as floodplain connectivity or hillslope
characteristics, which can influence both LWD sources and
recruitment potential (Benda et al., 2003). Although the
processes of natural wood recruitment have been studied in
detail (Martin and Benda, 2002; Benda et al., 2003; May and
Gresswell, 2003a), an extrapolation of reach‐scale recruitment
processes to whole watersheds has not yet been achieved.
Remote sensing technology offers a route to a spatially

explicit analysis of potential wood recruitment at the watershed
scale. High‐resolution light detection and ranging (lidar) has
been used to assess a number of forest structure attributes
including canopy height and density (Weltz et al., 1994;
Magnussen and Boudewyn, 1998; Lefsky et al., 2002), which
are indicators of potential wood sources. Concurrently, a high
level of topographic detail can help identify dominant LWD
sourcingmechanisms (channel migration and hillslope failure).
To date, these capabilities have not been used to conduct
watershed‐scale assessments of potential wood recruitment.
We developed a rapid and spatially extensive geomorphic

analysis using lidar data and applied it to the 78‐km‐long
Narraguagus River in coastal Maine, USA. Our objectives
were as follows: (i) to estimate tree height and recruitable tree
abundance throughout the watershed; (ii) to determine the
likelihood for the stream to recruit channel‐spanning trees at
reach scales and assess whether mass wasting or channel
migration is a dominant recruitment mechanism; and (iii) to
understand the past and future roles of LWD at a watershed
scale. The approach and methods presented herein may aid in
the siting of conservation tracts and LWD addition projects,
Copyright © 2011 John Wiley & Sons, Ltd.
build on previous research that has studied the recruitment and
geomorphic role of LWD at the watershed scale (Marcus et al.,
2002; Fremier et al., 2010) and validate efforts at modelling
wood recruitment to streams (Benda and Sias, 2003).
LANDSCAPE CONTEXT

Northern New England forests have undergone temporally
intense and spatially dramatic changes since the onset of
European colonization over three centuries ago (Lorimer,
1977; NRC, 2004). Over 92% of Maine’s land area was
forested in 1600, yet by 1872 only half of that forested area
remained as a result of intense timber harvest and land
clearing for agriculture. In the last century, following large‐
scale geographic shifts in the forest products industry, farm
abandonment following the opening of the Midwest and the
more recent introduction of sustainable forest practices and
riparian conservation (Maine DEP, 2008), forests have
regenerated and now cover ~90% of the state (NRC, 2004).
Yet the present regenerative state of Maine’s forests has not
translated into a wealth of LWD being found in streams
today—current wood loads are among the lowest measured
in forested landscapes (Magilligan et al., 2008). Several
mechanisms may be responsible for low wood levels, and
recovery of pre‐disturbance wood levels may lag forest
recovery by a century or longer (Bragg, 2000; Laser et al.,
2009). In concert with widespread timber harvest, log drives
occurred on the Narraguagus River until around 1900 and
continued on other coastal Maine streams until around 1970
(Koenig, Steven Koenig, Project SHARE, Eastport, Maine,
USA, personal communication), potentially removing any
residual wood left in stream channels. In addition to
anthropogenic disturbance, it is possible that inherently low
site productivity of coastal Maine rivers may place intrinsic
limits on the role of wood in these systems. As a result, the
inability to confidently detail the past role of LWD in Maine
streams leaves managers with neither a baseline value for
restoration projects nor a sense of what future role wood
might play in the presence of less intensive timber harvest,
particularly in riparian zones.
STUDY LOCATION

The Narraguagus River is located in Washington and
Hancock Counties of Maine (Figure 1). It flows south from
its headwaters at Eagle Lake and empties directly into the
Atlantic Ocean at Milbridge, Maine. The contributing
drainage area at the stream’s outlet is 588 km2 with a mean
channel slope of 0.0015. The river is one of eight streams,
all in coastal Maine, which hold the last remaining wild
populations of Atlantic salmon (Salmo salar) in the USA
(Maine Department of Marine Resources, 2009). Greatly
River Res. Applic. (2011)
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reduced from historic levels, the fish are listed under the
Endangered Species Act (NRC, 2004). In 2009, a salmon
trap in Cherryfield (Figure 1) recorded only eight salmon
returning to spawn in the river. The survival of Atlantic
salmon is directly tied to the availability of in‐channel LWD
(Nislow et al., 1999), which leads to the hypothesis that low
wood levels in the region may be partially responsible for
the low population levels of these fish.
There is only one dam on the river, an approximately

2‐m‐high crib structure at Cherryfield designed to control ice
flow, but its location near the river mouth has minimal
impact on basin‐scale flow or sediment flux. Other dams,
primarily for the temporary storage of water and timber
during log drives on the mainstem Narraguagus River, have
existed in the past, with the last dam being breached in 1951
(Harriman, 1977). Like many areas of Maine, the
Narraguagus basin continues to undergo timber harvest,
with roughly 60% of the watershed under the management
of forestry corporations (Arter, 2003). Field observations
and aerial photograph examination (USDA, 2007) indicate
that the majority of harvesting is presently occurring in the
upstream half of the basin. Blueberry farming composes a
significant but smaller proportion of present land use and
mostly occurs in the downstream half of the basin.
The Narraguagus flows into several mainstem ponds and

one large lake (Beddington Lake, 41 km from the Atlantic
Ocean; Figure 1). This lake marks the approximate limit of
the late Pleistocene marine transgressive facies (Thompson
and Borns, 1985). Upstream of Beddington Lake, the
Narraguagus River is primarily underlain by Paleozoic age
metasedimentary rocks of the Bucksport and Penobscot
formations (Osberg et al., 1985). The river flows over a
landscape dominated by glacial till, bounded by relict glacial
features such as knobs and eskers (Thompson and Borns,
1985). In this upstream section, bedrock outcrops are common,
and the channel bed is generally composed of gravel and
cobbles with little sand. Downstream of Beddington Lake,
Devonian alkali feldspar granites compose the majority of the
bedrock (Osberg et al., 1985), and the stream incises into sands
and gravels deposited in a glacial marine outwash delta. In this
reach, the channel exhibits a meandering planform and has a
finer streambed composed of sand and gravel.
METHODS

Study segment delineation

Using ArcGIS (ESRI, Redlands, CA), we divided the
Narraguagus River (USFWS, 2006) into 74 study segments,
each 1 km in length (Figure 1). Although the river above the
dam in Cherryfield is 78 km long, kilometres 42–45 were not
considered because of Beddington Lake, which negates the
geomorphic effectiveness of LWD in this area. Using 2007
digital orthophotograph quadrangles from the National
Agriculture Imagery Program (USDA, 2007), we measured
the low‐flow channel width (non‐flood; defined as the water‐
filled channel seen on aerial photographs) every 100m along
the stream and averaged these measurements to obtain the
mean channel width for each 1‐km study segment.

Lidar digital elevation model differencing

Lidar digital elevation models (DEMs) of the Narraguagus
River produced via airborne laser swath mapping were
collected by the National Center for Airborne Laser
Mapping in November 2007. The major advantage of a
lidar DEM is its high vertical resolution, which is typically
accurate to the decimetre scale (Sallenger et al., 2003;
Hodgson and Bresnahan, 2004). Our dataset contained the
entire length of the Narraguagus River with 1‐m horizontal
pixel resolution. We used two lidar grids: the first return
River Res. Applic. (2011)
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DEM,which samples elevations of the first object encountered
by the laser beam on its path to the ground; and the bare earth
DEM, which provides an interpolated elevation model of the
ground surface beneath the forest canopy. The TERRASCAN
software package (Terrasolid, Helsinki, Finland) was used to
filter the lidar point cloud and generate the bare earthDEM.By
differencing the first return DEM and the bare earth DEM, we
produced a model of vegetation heights (Figure 2). It is
important to note that by using raster DEMs, we analysed
the vegetation height in individual pixels rather than
delineating actual trees throughout the watershed. Lidar has
been successfully utilized in the determination of canopy
height (Blair et al., 1994; Magnussen and Boudewyn, 1998;
Lefsky et al., 2002) and has been validated as an accurate
(A) Aerial Photo

200

Metres

(C) Bare Earth

Figure 2. (A) 2007 orthophotograph, (B) hillshaded first‐return lidar DEM
(DEM) and (D) lidar DEM produced by differencing first‐return DEM an

in images are two l

Copyright © 2011 John Wiley & Sons, Ltd.
measurement technique for forestry applications (Weltz et al.,
1994; Andersen et al., 2006).
Groundtruthing

We performed field surveys in order to validate the lidar‐
based vegetation height estimates. Along twelve 50‐m bank
transects parallel to the Narraguagus River at an average
distance of 5m from the active channel, we counted and
measured trees for height, diameter, species (coniferous or
deciduous) and distance along the transect. These transects
were intended to be representative of the range of riparian
characteristics found along the Narraguagus River and were
distributed along the course of the river. Transect locations
40 m

0 m

Veg. Height

(B) First Return

(D) Vegetation Height

, (C) hillshaded bare‐earth interpolated lidar digital elevation model
d bare‐earth DEM. All images are of 1‐m resolution. Linear features
ogging roads.
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are shown in Figure 1; at each location, two transects were
measured, one on each bank. We recorded the endpoints of
each transect via global positioning system, and the results
of this groundtruthing campaign were compared with the
number of channel‐spanning vegetation pixels observed via
lidar analyses along identical transects.
Potential LWD delineation

In this study, we defined ‘potential LWD’ (PLWD) as
those pixels of the vegetation height DEM that were both
channel spanning and potentially recruitable.
Channel spanning means that an individual pixel of the

vegetation height DEM had an elevation equal to or exceeding
the width of the low‐flow stream channel within a particular
study segment. Although we acknowledge that LWD of many
size ranges influences channel morphology and habitat
heterogeneity, we focused on channel‐spanning wood as the
metric. As a result of piece length, channel‐spanning LWD is
more likely to be stable (Lienkaemper and Swanson, 1987;
Nakamura and Swanson) in high flows and to form integral
components of log jams (Montgomery et al., 2003), thereby
exerting greater and longer‐term geomorphic and habitat
influence than smaller pieces. Additionally, we placed an
upper bound on the height of PLWD. Given that the tallest
trees found in Maine are ~40m (Maine Department of
Conservation, 2009), any vegetation height values over 40m
were discarded as erroneously high, likely an artefact of the
laser striking an airborne particle during lidar surveying.
Approximately 0.004% of all pixels were discarded.
Potentially recruitable means that a certain pixel of the

vegetation height DEM is able to contribute wood to the
channel in a particular study segment. Using the bare‐earth
lidar DEM, we delineated the total valley width (the distance
between the tops of the valley walls measured orthogonal to
channel flow) and hypothesized that all trees within this area
can be recruited to the channel (Figure 3). Such recruitment
may occur by a variety of mechanisms including mass
wasting (May and Gresswell, 2003a, b), channel migration
and bank undercutting (Swanson and Lienkaemper, 1978;
Va

Floodplains

Terraces
Hillslopes

665 m

Figure 3. Oblique hillshaded bare‐earth lidar digital elevation model
(kilometre 26). Vertical

Copyright © 2011 John Wiley & Sons, Ltd.
Webb and Erskine, 2003), stochastic mechanisms such as
wind throw, fire and avalanches (Hairston‐Strang and
Adams, 1998; Conrad, 2003; Benda and Sias, 2003) and
simple tree mortality (Benda et al., 2003). Because our focus
was on the role of geomorphic processes in supplying LWD
to the channel, we took a spatially inclusive approach
regarding the amount of available PLWD that included valley
bottoms and adjacent hillslopes. Although mass wasting is a
limited recruitment mechanism in the low‐relief watersheds
of coastal Maine, we still wanted to include a watershed‐scale
inventory of potential wood sources, as one of our goals was
to develop a method which may be extended to other basins
with differing relief structures.
Along 1‐km segments of channel length, all vegetation

height pixels located in the valley‐width area, which were
equal to or greater than the mean channel width, were
counted as PLWD.

Geomorphic surface delineation

To more precisely locate sources of PLWD, we used the
bare‐earth lidar DEM to manually divide the valley into three
surface types: active floodplains, terraces and hillslopes
(Figure 3). Active floodplains are areas that the channel
regularly accesses and are marked by features such as scroll
bars and oxbows, generally located about 1m above the active
channel. Terrace surfaces are generally gently sloping to flat‐
lying and located adjacent to and generally 1–2m above the
active floodplain. Hillslopes are more steeply inclined areas
encompassing the remainder of the valley width. All three
surface types were not necessarily present adjacent to every
1‐km study segment. We calculated the amount of PLWD in
each of these surface types for every study segment.

Spatial overlap between recruitment sources
and mechanisms

To determine reach‐scale controls on LWD recruitment,
we divided the mainstem valley into reaches, drawing on
concepts developed in previous studies (Grant and Swanson,
1995; Bisson et al., 2006). We observed that wide valleys are
lley Width

showing geomorphic surfaces within Narraguagus River valley
exaggeration 3.5×.
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associated with broad floodplains and gradually sloping valley
walls, which indicates that channel migration, and not hillslope
mass wasting, would be the dominant process of tree
recruitment. Conversely, narrow valleys tended to have steeply
sloping walls and relatively little floodplain area, which leads
us to hypothesize that hillslope wasting would be the dominant
recruitment process in such segments. By dividing the range of
valley widths into thirds, we classified valley reaches as wide,
intermediate or confined (Figure 4). In all, five channel reaches
were delineated based on valley width.
We then subdivided the reaches of valley width based on

two other variables: channel sinuosity and mean valley‐side
slope, which we hypothesized to indicate the respective ability
of channel migration or mass wasting to recruit wood to the
channel. As before, we split the ranges of channel sinuosity
and valley‐side slope into thirds. We assigned values of
sinuous/intermediate/straight for channel sinuosity and steep/
intermediate/flat for valley‐side slope. When all three
geomorphic variables (valley width, sinuosity and valley‐side
slope) were considered, 11 channel reaches were delineated
(Figures 4 and 9; Table 1). The reaches range in length from 3
to 14 km.
Using the divisions of valley width, sinuosity and valley‐

side slope, we hypothesized the dominant recruitment process
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in every stream reach. For all stream reaches, we calculated
‘recruitment scores’, which attempt to quantify the amount of
PLWD recruitment in a particular reach likely to occur as
hillslope wasting, as opposed to channel migration. We
calculated recruitment scores using the following equation,
which provides a ratio of morphologies promoting PLWD
recruitment via hillslope mass wasting (steep valley‐side
slopes and narrow valleys) to those variables which promote
recruitment via channel migration (gradually sloping valley
sides and sinuous stream channels):

Recruitment score ¼
Valley side slope
Valley width

Channel sinuosity
� 1000 (1)

In Equation (1), the ratio of valley slope to valley width
provides an estimate of the likelihood for mass wasting to
occur, as steep‐walled narrow valleys are more prone to
landslides. Similarly, the measurement of channel sinuosity
quantifies the propensity for lateral migration to recruit
PLWD. Thus, high recruitment scores in Equation (1)
indicate that hillslope mass wasting is the dominant PLWD
recruitment process in the reach, whereas low scores
indicate that channel migration is more dominant in PLWD
recruitment.
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50 60 70

50 60 70

(km)

3A 3B 3C 4A 5A

STEEP

WIDE

SINUOUS

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

CONFINED

STRAIGHT

FLAT

3 4 5

lley Width:

3A 3B 3C 4A 5A

nd Valley-Side Slope:

(km)

ver. Values of valley width, sinuosity and mean valley‐side slope
gment. The ranges of values were subsequently divided into thirds.
on the basis of channel sinuosity and mean valley‐side slope.

River Res. Applic. (2011)

DOI: 10.1002/rra



Table I. Calculated recruitment scores for all stream reaches

Reach From km To km Valley width Sinuosity Valley slope Recruitment score

1A 0 14 Wide Sinuous Flat 3.68
1B 15 19 Wide Sinuous Intermediate 6.27
1C 20 28 Wide Sinuous Steep 7.38
2A 29 33 Intermediate Sinuous Intermediate 9.61
2B 34 37 Intermediate Intermediate Intermediate 8.02
2C 38 41 Intermediate Straight Intermediate 8.48
3A 46 56 Confined Straight Steep 35.96
3B 57 64 Confined Intermediate Steep 32.72
3C 65 68 Confined Intermediate Intermediate 14.4
4A 69 74 Intermediate Sinuous Flat 7.15
5A 75 77 Wide Intermediate Flat 4.94

Scores were calculated using Equation (1) and represent a ratio of valley morphologies promoting PLWD recruitment via mass wasting to those promoting
recruitment by channel migration.

LIDAR‐DERIVED EVALUATION OF LWD SOURCES & RECRUITMENT
Channel‐proximal PLWD delineation

Althoughwehypothesized that the channelmay recruitwood
from the entire valley via migration or hillslope wasting, prior
work has shown distance from the channel to be an important
factor inwooddelivery (McDadeetal., 1990).Processes suchas
wind throw and tree mortality, which can source LWD from
areas directly adjacent to streams, can be integral in LWD
recruitment (Hairston‐Strang and Adams, 1998; Benda et al.,
2003; Conrad, 2003). As such, we used lidar to estimate the
quantityofPLWDwhichmaybe recruitedbysimply falling into
the channel. Using ArcGIS, we delineated all lidar pixels that
satisfy this expression:

(Vegetation height)− (Distance from channel)≥
(Channel width)

Theprecedingexpressiongivesanestimateofthetreesthat,upon
falling, could span the adjacent stream channel (hereafter
referred to as proximal PLWD). Previous work regarding
LWD recruitment via tree fall into streams have illustrated the
complexities of such delivery, chiefly fall direction and
frequencyof tree fall (Hairston‐Strang andAdams,1998;Bragg
and Kershner, 2004; Sobota et al., 2006; Teply et al., 2007).
Here,our aimwas toprovidea rapid inventoryofpotentialwood
sourcesat thewatershedscale, soweperformedamore inclusive
analysis of proximalPLWDbyassumingabest‐case scenarioof
tree fall directly into the river channel. Research has shown that
the majority of tree fall in sites across the Pacific Northwest
indeed occurred in a direction towards the stream (Sobota et al.,
2006), largely an effect of valley‐side slope.

Predicted future conditions

In order to quantify future LWD recruitment potential, we
employed the Upland and Riparian Northeastern Coarse
Woody Debris (NE‐CWD) model (Lester et al., 2003). The
model simulates ecological processes for dominant tree
Copyright © 2011 John Wiley & Sons, Ltd.
species of New England shown to be representative of stand
conditions in the watershed as a whole (Nislow and Lowe,
2006). For our analyses, we used the model component that
estimates stand dynamics (ingrowth, diameter growth and
mortality) using functions derived from the NE‐TWIGS
(Northeastern Variant of The Woodsman's Ideal Growth
Projection System) model (Hilt and Teck, 1989), an
individual‐tree stand growth simulator for the northeastern
USA. All processes are based on annual time steps, using a
Monte Carlo approach, where replicated runs are averaged to
obtain output stand attributes (size and density of trees). In the
absence of site‐specific information regarding initial stand
conditions and exact species distributions, we applied uniform
growth and mortality parameters in conjunction with
published regional forest species compositions (Powell,
1985) across the study area.
As model inputs, we used stand data, including number of

trees and tree diameter, collected during lidar groundtruthing
along twelve 50m by 4m bank transects parallel to the
Narraguagus River. Combining the data from these transects,
we used the diameter of all trees recorded, along with tree
species distributions obtained from published forest compo-
sition for the region (Powell, 1985) as inputs. We then ran the
NE‐CWD model and allowed the simulated stand to develop
for 100 years. We used the model predictions of diameter
growth to estimate tree height using regressions developed
from the survey data (Figure 5) and then used these new size
and density measures to calculate predicted PLWD along the
length of the Narraguagus River.
RESULTS

Groundtruthing

The results of field‐based groundtruthing, completed in
the summer of 2009, are shown in Figure 6. Lidar DEM
differencing appears to appropriately estimate vegetation
River Res. Applic. (2011)
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height (R2 = 0.89, p < 0.001). Although six of these
groundtruth points are located at (0,0), we feel that it is
appropriate to include them in the regression because, in
this instance, the vegetation height DEM still accurately
predicts the lack of trees found at these six sites.
Additionally, when these (0,0) points are removed from
the regression, the relationship is still statistically significant
(p = 0.01). Our analysis indicates that one channel‐spanning
tree crown in the field is, on average, represented by 5.3 ± 0.38
channel‐spanning pixels on the vegetation height DEM.
Figure 6 indicates that the number of channel‐spanning pixels
derived from the lidar vegetation height DEM is a proxy for
the number of channel‐spanning trees that are found in a given
study segment area. It is important to note, however, that in
this study we deal simply with the number of vegetation pixels
that are tall enough to span the channel in a particular study
segment, and not individual trees.
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Copyright © 2011 John Wiley & Sons, Ltd.
Longitudinal distribution of PLWD

The distribution of PLWD along the Narraguagus River
is not uniform. Rather, the majority of PLWD is contained
within a relatively small number of study segments. For
example, more than half of all PLWD is found in the
upstream 5 km of the river [Figures 1 and 7(C)].
Additionally, more than 75% of PLWD is located within
the upper 18 km of the stream, with the downstream 51 km
of the river accounting for just 10% of the PLWD in the
system [Figure 7(C)]. The total abundance of PLWD is
never more than 50% of the area in any 1‐km study segment
and is rarely greater than 25% [Figure 7(B)]. Further,
downstream of Beddington Lake (river kilometre 41),
essentially no PLWD exists.
The amount of PLWD in a given study segment is largely

a function of channel width (Figure 8), as fewer trees within
a given river segment are able to span a wide channel as
compared with a narrow one. Virtually no PLWD is
available where channel width exceeds ~15m. However,
considerable variability exists in the percentage of study
segment area composed of PLWD when the channel width
is less than ~15m, which indicates that channel width is not
the only control on PLWD availability.
Strong spatial clustering exists in the longitudinal

distribution of PLWD. Individual 1‐km study segments
can have a large influence on the total amount of PLWD
found in the entire system. For example, river kilometres 77,
76 and 73 contain 15%, 24% and 10% of all the PLWD
found in the system, respectively [Figures 1 and 7(C)].
These three study segments alone thus account for roughly
half of all PLWD available to the Narraguagus River.
Cross‐sectional PLWD distribution

In general, the amount of PLWD located on hilllslopes
exceeds that located on floodplains or terraces [Figure 7(E)].
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Figure 7. Plotted against increasing upstream distance are the following: (A) average channel width in each 1‐km study segment, (B) per cent
of area in each 1‐km study segment composed of potential large woody debris (PLWD) pixels, (C) cumulative per cent of area in each 1‐km
study segment composed of PLWD pixels, (D) per cent of all PLWD pixels in 1‐km study segments, which are proximal PLWD (able to fall

and immediately span the channel) and (E) distribution of PLWD on active floodplain, terrace and hillslope surfaces.

LIDAR‐DERIVED EVALUATION OF LWD SOURCES & RECRUITMENT
Hillslopes contain 83% of all PLWD in the system, as
compared with 9% on terraces and 8% on floodplains.
Although hillslope area in the study area is about 4.5 times
greater than either floodplain or terrace area, the greater
amount of PLWD is not simply an artefact of the areal
extent of hillslope surfaces. In terms of volume of wood,
hillslopes contain roughly twice as much PLWD per square
metre than floodplains and terraces, explaining why the
overall longitudinal distribution of PLWD [Figure 7(C)]
Copyright © 2011 John Wiley & Sons, Ltd.
largely mirrors the distribution on hillslope surfaces. In river
kilometres 68 through 77, we indentified no terrace surfaces
using the bare‐earth lidar DEM, and thus no PLWD exists
on terraces in these study segments.
PLWD location versus dominant recruitment mechanisms

The calculated recruitment scores vary considerably
between delineated reaches (Table 1; Figure 9). Eight of 11
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reaches (encompassing 68% of river length) have low scores
associated with gradual‐to‐medium slopes and high channel
sinuosity, which indicates that channel migration would be the
dominant LWD recruitment mechanism in these locations.
However, in these reaches, most of the PWLD is located on
hillslopes (Figures 9 and 10), as floodplains and terraces are
largely unforested, which indicates a disconnect between
dominant recruitment mechanisms and PLWD source loca-
tions. In the remaining three reaches (which make up 31% of
river length), dominant recruitment mechanisms are more
positively correlated with PLWD sources. Of these, hillslope
wasting is predicted to be the dominant recruitment
mechanism in two reaches (3A and 3B) where most PLWD
was present on hillslopes, and channel migration is predicted
to be the dominant mechanism in reach 2B, where a large
proportion of PLWD was available on terrace and floodplain
surfaces (Figure 10).
Future LWD supply

Over a 100‐year simulation, with no timber harvest
occurring, the results of the NE‐CWD model (Table 2)
show that the number of proximal trees within the surveyed
plot will remain relatively constant (144 surveyed trees in
2009 compared with 149 predicted trees in 2109). However,
the mean diameter of trees in the plot increases substantially
from 21.8 cm in 2009 to 54.5 cm in 2109. As our field data
indicate, tree diameter is related to tree height (Figure 5) for
both deciduous and coniferous species. The increase in
diameter will correspond to a height increase of approxi-
mately 8.8m (for conifers) and 8.0m (for deciduous trees)
in 100 years, which implies that a greater amount of PLWD
will be available to the Narraguagus River in the future. The
results of this increase in tree height are shown in Figure 11,
which implies that the distribution of PLWD along the
Copyright © 2011 John Wiley & Sons, Ltd.
Narraguagus River will be more spatially uniform and that
the lower reaches of the stream will have a greater potential
to contribute PLWD 100 years into the future—although
channel width may still exert a large control on the amount
of PLWD available to a particular stream reach.

Proximal PLWD distribution

Proximal PLWD, defined as those vegetation pixels that
may contribute channel‐spanning wood simply by falling
into the adjacent channel, rarely composes a significant
fraction of the total PLWD within a study segment [Figure 7
(D)]. When all PLWD pixels within a 1‐km segment are
examined, it is rare that more than 1% of those are proximal
PLWD pixels. The two instances where proximal PLWD
composes more than 1% of all PLWD in a study segment
occur at river kilometres 13 and 28, where proximal PLWD
contributes 5.5% and 1.8% of all PLWD, respectively
[Figure 7(D)]. However, these numbers should be taken
River Res. Applic. (2011)
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Table II. NE‐CWD model output for 100‐year run with no timbe
harvest, showing number of predicted trees within a given
diameter class

Diameter (cm) 2009 field surveyed 2109 model predicted

0–10 6.0 0.0
11–20 75.0 83.0
21–30 42.0 26.0
31–40 15.0 14.0
41–50 3.0 13.0
50+ 3.0 13.0
Mean diameter 21.8 54.5

Input data were collected during field surveys in the summer of 2009 and
included tree species, diameter and height along twelve 50m by 4m
riparian bank transects parallel to the Narraguagus River.
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with caution, as those two reaches contain an extremely small
amount of total PLWD (0.04% and 0.09% of total
recruitment zone area), and thus the proximal PLWD
percentages may be skewed by the correspondingly small
population size in each of those segments. Although
proximal PLWD composes a small fraction of the overall
wood available to the Narraguagus River in a particular study
segment, LWD recruitment from areas close to the
Narraguagus River may rely heavily on this source of
channel‐spanning wood. Currently, 0.03% of valley width
area along the Narraguagus River is composed of proximal
PLWD. Yet predictions of tree growth using the NE‐CWD
model indicated that, in 100 years, 0.4% of buffer area will be
composed of proximal PLWD, which equates to an 11‐fold
increase in the amount of proximal PLWD available. When
our estimate of one channel‐spanning tree being represented
by 5.03 ± 0.38 channel‐spanning lidar pixels is used, this
modelled increase in PLWD means that although there are
r
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currently about 2300 proximal channel‐spanning trees in our
study area, in 100 years’ time, this number may increase to
around 25 500 proximal channel‐spanning trees (not account-
ing for tree mortality or recruitment during this time).
DISCUSSION AND CONCLUSIONS

We successfully developed a method to use lidar data to
evaluate potential wood recruitment at the watershed scale
and applied this method to assess spatial and temporal
variation in potential wood sources in the Narraguagus River
basin of coastal Maine, USA. Lidar data accurately predict
the presence of channel‐spanning trees along the river and
assist in the delineation of valley topography in a way that is
directly relevant to potential recruitment of wood. In
applying the method to the Narraguagus River, we
documented substantial spatial variation in wood sources
and recruitment mechanisms. In this basin, a spatial
disconnect between valley‐wide sources and mechanisms
likely restricts recruitment to wood sources immediately
adjacent to the river channel and partially explains the very
low levels of wood currently observed in this system and
potentially in coastal Maine on the whole (Magilligan et al.,
2008). However, predicted changes in the size structure of
this riparian forest are expected to increase the availability of
large wood, which may be retained in wider river sections
that are unlikely to be influenced by channel‐spanning LWD
at present. Whereas sources and mechanisms of wood
recruitment vary considerably across regions, our method is
easily transferable and may provide a means to understand
and explain these regional differences.
One of the most striking findings of the study is the

extreme spatial variability in wood sources and recruitment
mechanisms along the Narraguagus River. Sources of PLWD
)
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are disproportionately distributed in the upper 5 km of the
basin. Nearly half of the total PLWD is found in three 1‐km
study segments (<5% of the total river length).We expect that
most river basins will exhibit some spatial variation in wood
sources, and longitudinal variability in the amount of wood
found in channels (Magilligan et al., 2008; Fisher et al., 2010)
may indicate that the spatially discrete distribution of PLWD
sources found in this study directly translates to distinct zones
of in‐channel wood frequency. The finding that the vast
majority of wood is located in the upper reaches of the
Narraguagus River is also consistentwith studies of in‐channel
wood loads (Wohl and Jaeger, 2008), which found that,
overall, wood loading decreased in the downstream direction,
likely as a result of the increasing capacity of channels to
transport wood in lower reaches.
With particular regard to the Narraguagus River water-

shed, the character of the New England landscape likely
plays a role in the high level of spatial heterogeneity we
observed in PLWD distribution. In particular, local‐scale
(<10 km) heterogeneity in soil and bedrock characteristics
result from glacial activity. Additionally, local‐scale vari-
ation in land use history (associated with the traditionally
small land parcel sizes in this region) will produce high levels
of variance in forest characteristics, which in turn will
generate variability in the amount of PLWD. This spatial
variation has important implications for research and
management. At the most immediate level, knowing the
location of likely wood sources will help managers prioritize
conservation efforts and also help to identify locations that
provide a sufficient source of wood for habitat restoration
projects. More generally, this high level of spatial hetero-
geneity underscores the importance of a detailed basin‐scale
approach.Without a watershed‐scale perspective, reliance on
‘representative’ subsections of forest will yield a highly
biased and potentially misleading snapshot of wood sources
and recruitment mechanisms.
Our analyses suggest a general model describing a series of

spatially nested constraints on wood recruitment to rivers.
Moving outward from the river channel, the interaction
between channel dimensions, the size structure of the
adjacent riparian forest and local‐scale recruitment mecha-
nisms (individual tree mortality, wind throw, bank erosion)
set a baseline level of wood recruitment from channel‐
proximal trees. Along the Narraguagus River, tree height
distributions currently limit the spatial influence of wood to
sections less than ~15m in width. However, given the
protected status of the riparian zone throughout the basin
(Maine DEP, 2008), predicted increases in tree size will
likely expand this zone of influence. Under these old‐growth‐
like conditions, wood will likely play a greater role in the
system, a finding consistent with previous modelling
(Nislow, 2010) and empirical work (Keeton et al., 2007) in
the northeastern region.
Copyright © 2011 John Wiley & Sons, Ltd.
At increasing distance from the channel, wood recruitment
at the valley scale depends on the overlap between
recruitment sources and dominant recruitment mechanisms.
Along the Narraguagus River, PLWD recruitment from
beyond the adjacent riparian zone appears unlikely for two
reasons. First, although hillslopes along the Narraguagus
River represent a large stock of PLWD, these slopes are
composed of well‐drained upland soils and are generally not
steep enough (average valley‐side slopes of around 8°) to
undergo the mass movement that would be necessary to bring
that PLWD to the channel. Correspondingly, we observed no
evidence of mass wasting (landslide scars and debris piles)
during field work on the Narraguagus River. These observa-
tions are in strong contrast to studies in the Pacific Northwest
(May and Gresswell, 2003a, 2003b), which found that slope
instability contributed to in‐channel wood loading. Second,
although we did observe areas of low‐lying floodplains and
terraces that could be accessed via channel migration, in this
system, these areas provide little recruitable wood, as they are
typically large emergent wetlands with little tree cover.
What do these findings mean for the management and

future habitat conditions in the Narraguagus River?We argue
that the disconnect between distal recruitment sources and
mechanisms places an intrinsic limit on the current and future
abundance and distribution of wood in the system. Some of
these limitations are not amenable to management or
restoration. For example, there is little that management
can do to establish recruitment from hillslopes when mass
wasting is unlikely to occur. Similarly, it is not feasible or
desirable to convert natural emergent wetlands to provide a
source of wood to the river. These observations suggest that
the role and availability of wood is likely to be more limited
along the Narraguagus River than in systems where non‐
proximal recruitment mechanisms are also present. These
intrinsic constraints on wood loading can also help to set
appropriate management and conservation targets. If the
management goal is to restore (as opposed to supplementing
or enhancing) a ‘natural wood regime’ (Laser et al., 2009),
a strong focus on forest dynamics in the immediate vicinity of
the channel is justified. In systems where appropriate
reference conditions are not available, forest vegetation
simulation models can then be used to set realistic basin‐wide
targets for wood recruitment, as well as provide guidelines
for active wood restoration projects designed to provide
accelerated recovery. This approach was previously used to
determine that current wood loads in the streams in the Green
Mountains of central New England, USA, were well below
predicted old‐growth conditions and that current active
restoration projects were within the range of these predicted
loads (Nislow, 2010).
We acknowledge some important limitations of the lidar‐

based approach and conceptual model. First, we focus on
wood sources and potential recruitment processes and do not
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explicitly incorporate proximal recruitment mechanisms
governing tree mortality and fall rates, which can generate
considerable variation in actual wood recruitment (Benda
et al., 2003). Second, althoughwe concentrate on recruitment
of channel‐spanning wood, which should be less mobile once
in the river (Lienkaemper and Swanson, 1987), wood
transport and channel–floodplain exchange, particularly of
smaller size fractions, may have an important influence on
resultant wood loads. Coupling our approach and conceptual
model with more explicit recruitment models would help
bridge this gap. Finally, our model is applied only to the
mainstemNarraguagus River, and narrower tributary streams
may provide more suitable locations for the recruitment of
channel‐spanning wood. Despite these limitations and
simplifications, our approach provides a rapid and spatially
inclusive approach to estimate the relative supply of LWD to
channels and identifies regions where LWD restoration
efforts may be most effective within watersheds.
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