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Abstract

Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native

Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high-

elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout

invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in

stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten

the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment

scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spa-

tially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks

from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and

2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the

warmest summer period. In contrast, only 37% of populations have a � 90% chance of persistence for 70 years (simi-

lar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream frag-

ments <7 km long, and those at the lowest elevations, are at the highest risk of extirpation. Therefore, interactions of

stochastic disturbances with fragmentation are projected to be greater threats than warming for CRCT populations.

The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT popula-

tions to high-elevation stream fragments that are buffered from the potential consequences of warming, but at risk of

extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to

forestall these risks.
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Introduction

The changing climate worldwide has already influ-

enced the distribution and persistence of biota, and

this change is predicted to continue (Parmesan &

Yohe, 2003; Root et al., 2003; Rosenzweig et al., 2008).

Biota in aquatic ecosystems have been particularly

vulnerable, because fishes and aquatic invertebrates

are ectothermic and have species-specific temperature

requirements that make them sensitive to changes in

thermal regimes (Ficke et al., 2007; P€ortner & Farrell,

2008). For example, substantial changes in tempera-

tures owing to climate change have been reported for

rivers and streams (Webb & Nobilis, 2007; Isaak et al.,

2012a), and changes to these and other abiotic charac-

teristics have already had strong consequences for

many aquatic biota (Burgmer et al., 2007; Daufresne &

Boet, 2007; Buisson & Grenouillet, 2009). Moreover,

fish often will be unable to avoid rising temperatures

because their movements are restricted to river net-

works.

Although temperature is a critical factor affecting

aquatic biota in lotic ecosystems, other abiotic variables

also alter habitat and shape life histories. Modeling and

long-term measurements from western North America

have revealed changes in precipitation patterns (Pag-

ano & Garen, 2005) and, more importantly for fishes,

the timing and magnitude of stream flows (Luce &

Holden, 2009; Clow, 2010; Leppi et al., 2012). The
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changing climate is also expected to shift regimes of

landscape-level stochastic disturbances like wildfire

(Westerling et al., 2006), which could alter stream habi-

tat by increasing the prevalence of postfire landslides

(i.e., debris flows) that can inundate streams with sedi-

ment (Cannon et al., 2010). Therefore, it is important to

include multiple factors and their interactions when

addressing how a changing climate could influence

populations of aquatic biota such as fishes (Isaak et al.,

2012b).

One ecologically and economically important group

of fishes that is particularly susceptible to climate

change is the salmonids (salmon, trout, and whitefish),

a group of stenothermal fishes that require cold water

(Jonsson & Jonsson, 2009; McCullough et al., 2009; Isaak

et al., 2012b). Research worldwide indicates that

increases in stream temperature will influence the dis-

tribution and persistence of many salmonid popula-

tions (Keleher & Rahel, 1996; Nakano et al., 1996; Hari

et al., 2006). For example, recent work from western US

mountain systems has predicted that rising water tem-

peratures will truncate stream habitat drastically for all

trout species (Rieman et al., 2007; Isaak et al., 2010;

Wenger et al., 2011). However, projecting the effects of

these changes in climate has been hampered by the

coarse resolution of General Circulation Models

(GCM). Fortunately, recently developed downscaled

climate projections (e.g., Tabor & Williams, 2010; Hoste-

tler et al., 2011) allow increased resolution to match the

finer scales at which predictions about aquatic habitat

are needed.

For native salmonids, loss of habitat from changes to

temperature and flow often combine with invasions by

nonnative species to further restrict the native species

to fragments of their former habitat (Fausch et al., 2009,

2010; Wenger et al., 2011). Recent research shows that

persistence of native species in these isolated habitats is

sensitive to fragment size (Rieman & McIntyre, 1995;

Morita & Yamamoto, 2002), which influences both the

size and genetic integrity of a population (Hilderbrand

& Kershner, 2000; Dunham et al., 2004; Young et al.,

2005; Neville et al., 2009). Fragment size also influences

the risk of extirpation from climate-driven stochastic

events such as wildfire and debris flows (Rieman &

McIntyre, 1995; Dunham et al., 2003), channel freezing

(Chisholm et al., 1987; Lindstrom & Hubert, 2004;

Brown et al., 2011), and channel dewatering or drying

(Schindler et al., 1996; Jenkins & Keeley, 2010; Leppi

et al., 2012).

These climate change–related threats could be partic-

ularly troublesome for cutthroat trout (Oncorhynchus

clarkii spp.), a group of 14 salmonid subspecies native

to the western US. Most are restricted to only <1–25%
of their historical ranges (Young & Harig, 2001; Behnke,

2002), primarily owing to nonnative trout invasions

and habitat loss from various land uses. This fragmen-

tation presumably places many subspecies at risk from

climate change (Williams et al., 2009). Colorado River

cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus),

for example, are currently found in only 14% of their

historical range in the upper Colorado River basin, con-

fined to headwater stream fragments above 1700 m in

elevation (Hirsch et al., 2006; Young, 2008). Average

summer air temperatures in this region of the Southern

Rocky Mountains are predicted to increase ~2.7 °C by

2050 (Ray et al., 2008), which can serve as proxy for

trends in stream temperatures because both are driven

by short- and long-wave solar radiation (Webb et al.,

2008). Similar processes are also driving, in part, the ear-

lier snow melt and peak stream discharge that already

have been detected for high-elevation streams in Colo-

rado (Clow, 2010; Isaak et al., 2012b). Therefore, to con-

serve imperiled subspecies like CRCT in the face of

climate change, we will need to move beyond predicting

shifts in range-wide fish distributions across large areas

based solely on temperature and use a more focused

approach that addresses multiple interacting threats for

specific regions like the upper Colorado River basin.

Here, we develop a Bayesian Network (BN) model to

assess how changes in stream temperature interact with

stream fragment length to influence the persistence of

individual CRCT populations over short-term and

long-term time horizons (to 2040 and 2080). To project

water temperatures at the scale of stream reaches (~0.1–
20.0 km in length), we developed a regional stream

temperature model that combines the effects of air tem-

perature changes with landscape characteristics and

changes in stream flow to predict CRCT thermal habi-

tat. In turn, changes in air temperature and stream flow

are predicted from state-of-the-art dynamical-down-

scaled regional climate models (Hostetler et al., 2011).

We integrate these effects using the BN to create spa-

tially explicit predictions of relative persistence proba-

bility for each CRCT population. These results will be

useful to help direct management decisions and priori-

tize restoration activities for imperiled CRCT popula-

tions in the face of a changing climate.

Materials and methods

Study area and fish distribution data

Our study area was the upper Colorado River basin, which

includes the Colorado River and all tributaries above Glen

Canyon Dam and Lake Powell (Fig. 1a). The upper Colorado

River basin lies within the southern Rocky Mountain region of

North America which includes several aquatic ecotypes rang-

ing from high alpine streams and lakes to arid lowland rivers.

© 2013 Blackwell Publishing Ltd, Global Change Biology, 19, 1383–1398

1384 J . J . ROBERTS et al.



We restricted our analysis to 309 discrete headwater stream

segments (i.e., fragments) known to contain conservation pop-

ulations of CRCT. Conservation populations are defined as

being isolated from nonnative trout, almost always by barri-

ers, and are also free from disease and hybridization with

other species (Hirsch et al., 2006). Median length of fragments

is only 5.9 km (Fig. 1b), owing to this isolation. Each CRCT

segment is composed of multiple National Hydrography

Dataset Plus (NHDPlus; 1 : 100 000; http://www.horizon-

systems.com/nhdplus) stream reaches. All study streams

are � 1700 m in elevation, and found primarily on public

lands in three states (CO, UT, WY). Locations, downstream

barriers, upstream extent of stream use by CRCT, and status

of CRCT conservation populations were determined from the

most recent CRCT Conservation Team range-wide database

(2009), first described in Hirsch et al. (2006).

Bayesian network model

We developed a BN model to predict the effects of lotic ther-

mal conditions and stream fragment length on the relative

persistence of CRCT populations for 30 and 70 years after

2010 (i.e., 2040 and 2080). The graphically based modeling

framework of BNs is flexible and easily interpreted (Marcot

et al., 2006), and their use is increasing in ecology and conser-

vation biology (Rieman et al., 2001; Peterson et al., 2008; Stew-

art-Koster et al., 2010). Two key steps in creating a BN are: (i)

constructing a directed acyclical graph (DAG) that depicts

important interactions among variables (nodes) that influence

model outcomes (here, CRCT persistence), and (ii) defining

states within each node. In our case, temperature regimes

affect CRCT survival, growth, and reproduction (Fig. 2). Like-

wise, stream fragment length determines population genetic

factors and the ability to buffer against stochastic factors,

which together affect the habitat capacity of the segments. In

turn, habitat capacity interacts with temperature to affect

persistence of CRCT populations.

We sought to create a relatively simple BN that included

the essential processes that govern CRCT persistence in

stream fragments, so that it will be readily understood and

used by a variety of practitioners (e.g., research scientists and

resource managers). We used established objective methods to

develop the BN (Marcot et al., 2006; Marcot, 2012), and sought

independent review from outside users and experts at two

stages. First, the first three coauthors collaborated to develop

the initial DAG, creating the structure whereby parent nodes

(e.g., stream temperature and fragment length) feed informa-

tion to child nodes (e.g., effective population size, habitat

capacity/potential). Second, these authors developed narra-

tives and defined states for each node using a combination of

data from refereed literature and expert opinion. Third, we

sought initial peer review of the DAG, narratives, and node

states from four outside users, all state and federal fishery

biologists who manage CRCT conservation populations.

Fourth, after revising the BN based on these reviews, the three

coauthors each independently defined the conditional proba-

bilities at every child node for each combination of parent

node states, the final step in developing the BN. Fifth, after

reconciling minor differences in the conditional probabilities,

we completed final calculations of CRCT population persis-

tence and prepared the manuscript. We then sought a second

independent peer review from two research scientists who are
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Fig. 1 Location, elevation, and fragment length of the Colorado River cutthroat trout (CRCT) conservation populations. Panel (a)

shows the location of the CRCT populations, and the major rivers and states in the upper Colorado River basin. Panel (b) shows the

length (km) frequency distribution of stream fragments for all 309 CRCT conservation populations (median length = 5.9 km).
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experts in cutthroat trout ecology and conservation, and have

modeled climate change and used BNs for stream salmonids.

Finally, we assessed the validity and behavior of our BN using

established protocols (Marcot et al., 2006; Marcot, 2012),

including testing the sensitivity of our predictions of CRCT

population persistence to each node (see S-Bayesian Network

sensitivity).

Node and state definitions

Temperature requirements for survival. Maximum stream

temperature is often assumed to be a strong determinant of

species distributions where populations are close to the upper

thermal tolerance limit of a species. To represent this, we cal-

culated the Maximum Weekly Maximum Temperature

(MWMT), which is the average of the daily maximum temper-

atures for the warmest 7-day period. This metric represents

the extreme peaks that cause trout mortality, which we used

to define the upper limit of thermal habitat suitable for persis-

tence of CRCT populations. However, this thermal threshold

for survival is more liberal than existing criteria used to define

upper thermal conditions that are safe for cutthroat trout and

prevent any deleterious effects (e.g., Todd et al., 2008).

Investigators conducting field and laboratory studies of

lethal temperatures for cutthroat trout have measured three

different criteria: Upper Incipient Lethal Temperatures (UILT),

Ultimate Upper Incipient Lethal Temperature, and Critical

Thermal Maxima (CTM) values (Johnstone & Rahel, 2003; Bear

et al., 2007; Underwood et al., 2012; S-Bayesian Network node

and state definitions). Criteria for two cutthroat trout subspe-

cies are most relevant for our purpose. The 7-day UILT for

Bonneville cutthroat trout (Oncorhynchus clarkii utah), a neigh-

boring and evolutionarily similar subspecies to CRCT

(Behnke, 2002; Loxterman & Keeley, 2012), is 24.2 °C (John-

stone & Rahel, 2003) and the CTM is 29.7 °C (Wagner et al.,

2001). The CTM for CRCT acclimated at 20.0 °C is 29.4 °C
(Underwood et al., 2012). Therefore, we reasoned that the

lethal MWMT for CRCT is between 24.2 and 29.4 °C (S-Bayes-

ian Network node and state definitions).

Diel temperature fluctuations in streams can allow fishes to

survive above the lethal limits measured at constant tempera-

tures in the laboratory. Johnstone & Rahel (2003) measured

the upper lethal limit for Bonneville cutthroat trout under diel

fluctuations of 10–13 °C reported from the field (Schrank et al.,

2003) and found they survived until maximum tempera-

tures reached 28 °C. Temperature records from CRCT

streams � 1700 m elevation (n = 146) for the warmest 7 days

of the year that make up the MWMT showed that the diel

range averaged 7.4 °C, similar to that used by Johnstone & Ra-

hel (2003). Also, the mean daily maximum of the 7 days com-

prising the MWMT for CRCT streams had a standard

deviation of 1.1 °C. Therefore, we reasoned that a MWMT of

26.0 °C would be within ~2 SD of the maximum daily temper-

ature of 28.0 °C that likely causes death under diel fluctua-

tions like those in natural streams, and selected a MWMT

� 26.0 °C as the upper limit for CRCT population persistence

(Table 1; S-Bayesian Network node and state definitions).

Temperature requirements for growth and recruitment. The

temperature metric most relevant for growth and recruitment

of CRCT is the maximum 30-day average temperature

(M30AT), determined annually, which measures the mean

temperature for approximately the warmest month. Two labo-

ratory experiments investigating the effects of constant tem-

perature on growth of cutthroat trout, using constant or

maximum rations, showed that growth reached 75–100% of

Maximum
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population persistence

Stream fragment
length

Effective
population

size

Habitat
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Fig. 2 The directed acyclical graph used to structure the Bayesian network (BN) model, which predicts the future persistence of Colo-

rado River cutthroat trout (CRCT) populations.
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the maximum rate between 9.5 and 18.0 °C (Bear et al., 2007;

Brandt, 2009). These studies also showed that growth declined

markedly below 9.0 °C and above 18.0 °C, and was only

25–50% of optimal growth or less above 20.0 °C (S-Bayesian

Network node and state definitions).

Monthly temperature metrics are also a good indicator of

recruitment, so M30AT was also used to assess recruitment

potential for CRCT. This metric is similar to mean July or

August temperatures, which were found in previous research

to indicate suitable thermal conditions for recruitment of two

neighboring subspecies of cutthroat trout (greenback cutthroat

trout Oncorhynchus clarkii stomias; Rio Grande cutthroat trout

Oncorhynchus clarkii virginalis; Harig & Fausch, 2002). Field

studies (Harig & Fausch, 2002; Coleman & Fausch, 2007a) and

laboratory experiments (Coleman & Fausch, 2007b) indicated

that a minimum thermal threshold of 8.0 °C M30AT is needed

to support minimal CRCT recruitment and � 9.0 °C is

required for consistently high recruitment. To describe the

effect of stream temperature on CRCT recruitment and

growth, we integrated the above information to create five

nodes states (no recruitment, low recruitment, optimal

growth, declining growth, and low or no growth; Table 1; S-

Bayesian Network node and state definitions).

Stream fragment length

Effective population size. To ensure the persistence of a pop-

ulation, individuals must display sufficient genetic variation

to allow population adaptation given ecological and evolu-

tionary constraints. Allendorf & Luikart (2009) proposed that

to ensure long-term population persistence, an effective popu-

lation size (Ne) of at least 500 is required. In general, popula-

tions with Ne < 50 are believed to be in danger of immediate

deleterious inbreeding effects, whereas those with Ne between

50 and 500 are of intermediate concern (Rieman & Allendorf,

2001). For these intermediate population sizes, we inferred

Table 1 Bayesian network node descriptions and the corresponding states for each node. Input data (I) are shown for the five

input parent nodes

Node name Definition States

Maximum stream temperature

(MWMT; I)

The warmest 7-day mean of the maximum

daily stream temperature, used to evaluate

survival

Survival: <26.0 °C
Mortality: � 26.0 °C

Mean summer stream temperature

(M30AT; I)

The warmest 30-day mean of the average

daily stream temperature, used to evaluate

recruitment and growth

No recruitment: <8.0 °C
Low recruitment: 8.0–9.0 °C
Optimal growth and recruitment:

9.1–18.0 °C
Declining growth: 18.1–19.9 °C
Low or no growth: � 20.0 °C

Stream fragment length (I) Stream length for individual CRCT segments

indentified in the Colorado River Cutthroat

Trout Conservation Team range-wide database

0.02–96.4 km

Time horizon (I) Time period for predicting population

persistence

Short: 30 years (2040)

Long: 70 years (2080)

Ne/N ratio (I) Proportion of census population (N) contributing

unique genetic diversity to the population

0–1 (0.25)*

Effective population size Effective population size (Ne; shown in parenthesis)

estimated from the Ne/N ratio, based

on the estimate of N predicted from stream

fragment length (Young et al., 2005)

Potential genetic consequences

Immediate negative: (Ne < 50) <1.7 km

Short-term negative: (Ne = 51–200)

1.7–4.6 km

Long-term negative: (Ne = 201–500)

4.7–7.7 km

Robust: (Ne > 500) >7.7 km

Stochastic buffering The capacity of the stream fragment to buffer the

CRCT population against fire, debris flow,

freezing, and drying

Limited buffering: <3.6 km

Variable buffering: 3.6–7.2 km

Robust buffering: >7.2 km

Habitat capacity/potential The capacity for the stream segment to maintain

a viable CRCT population, based on combined

influences of Ne and stochastic buffering

Low

Moderate

High

Probability of CRCT population

persistence

The probability of persistence (>20 adult fish total)

for an individual CRCT population over the

time horizon

Persist

Extirpated

*Ne/N ratio synthesized from literature for salmonids and used in all our model runs. However, our BN structure allows for input

of any proportional value from 0 to 1.
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that those between 50 and 200 are at risk of negative genetic

consequences over the short term (i.e., <30 years, by 2040)

whereas those between 201 and 500 are somewhat buffered

from short-term effects, but at risk over the long term (i.e.,

70 years, by 2080).

The effective population size is generally smaller than the

total or census population (N). Effective population size repre-

sents the size of an ideal population (i.e., with discrete cohorts,

equal sex ratio, random mating, constant size, and equal

reproduction probability; Frankham, 1995) that would experi-

ence the same amount of genetic drift as the actual population

of interest (Wright, 1969). One common way to infer Ne from

N is to apply a Ne/N ratio. Values of Ne/N ratios reported for

stream-resident salmonids range from 0.15 to 0.50 (Rieman &

Allendorf, 2001; Palm et al., 2003; Jensen et al., 2005). There-

fore, we used a Ne/N ratio of 0.25 to estimate Ne, which is in

the lower half of the range reported and should result in con-

servative estimates. This value is also similar to the Ne/N ratio

of 0.20 used previously to assess the persistence of cutthroat

trout populations (Hilderbrand & Kershner, 2000).

Young et al. (2005) developed a relationship predicting cen-

sus population size from fragment length for CRCT and

greenback cutthroat trout in 31 streams. Their data were best

described by a positive linear relationship between stream

fragment length (km) and the square root of cutthroat trout

abundance. We combined this with our Ne/N ratio to deter-

mine the minimum CRCT segment length required to meet

our four Ne criteria (Table 1). This created four states of risk

for genetic consequences, ranging from populations at imme-

diate risk (<1.7 km = Ne < 50 CRCT), to those with genetic

variability sufficient to allow adaptation to potential evolu-

tionary and environmental constraints for at least 70 years

(>7.7 km = Ne > 500 CRCT; see S-Bayesian Network node and

state definitions).

Stochastic environmental factors. Stream fragment length

also affects the persistence of cutthroat trout populations by

influencing the incidence of internal refuges from stochastic

disturbance, such as wildfire (Rieman & Clayton, 1997; Brown

et al., 2001; Dunham et al., 2007), debris flows (Gresswell,

1999; Cannon et al., 2010), and stream drying and freezing

(Hubert et al., 2000; Lindstrom & Hubert, 2004). A summary

of the available information revealed similar thresholds for

stream fragment length at which populations are highly sus-

ceptible to stochastic risks (<3.6 km), vs. those that are at vari-

able risk (3.6–7.2 km), or robust to these risks (>7.2 km;

Table 1). For example, bounded alluvial valley segments

(BAVS) are geomorphic features that create low-gradient mea-

dow segments with sufficient groundwater to prevent freezing

and drying within Rocky Mountain stream networks, and

tend to occur at relatively regular intervals of about 3.6 km

(Baxter et al., 1999; Baxter & Hauer, 2000). Likewise, other

studies indicate that native trout in stream fragments shorter

than about 3 km are at high risk of extirpation from wildfire,

whereas those in stream fragments longer than about 6 km

are at low risk because of spatial heterogeneity in burns

and internal refuges for fish (Rieman & Clayton, 1997; Brown

et al., 2001). After fire, habitat in headwater stream fragments

is at risk of inundation by colluvial debris flows, with

those <7.2 km long most susceptible (Cannon et al., 2010; S-

Bayesian Network node and state definitions-Debris flows;

Figure S1). We combined all these stochastic risks into one set

of nodes states because the thresholds for stream fragment

length are similar, based on the evidence available and our

own experience. Overall, we expect that longer stream frag-

ments can better buffer these stochastic factors, because wild-

fires and debris flows are patchy in space or have limited

spatial extent, and because longer stream fragments are likely

to have internal refuges from drying and freezing created by

alluvial geomorphic features (e.g., BAVS, beaver dams) that

supply groundwater (Table 1; S-Bayesian Network node and

state definitions).

Bayesian network input variables

Our goal was to predict the relative probability of persistence

for each of the 309 CRCT conservation populations in the

upper Colorado River basin under present conditions, and

under altered conditions of air temperature and flow regimes

30 and 70 years in the future (2040 and 2080). We used a Geo-

graphic Information System (GIS) to measure the length of

stream fragments with conservation populations (termed

CRCT segments, hereafter), which we assumed would not

change through time. The downstream ends of nearly all

CRCT segments are set by barriers like water diversions, cul-

verts, or natural waterfalls that prevent upstream invasion by

nonnative trout. We then developed a stream temperature

model to predict the two temperature metrics (MWMT and

M30AT) for each CRCT segment, based on future air tempera-

ture and flow predicted by dynamically downscaled climate

models. Here, we describe the data and statistical techniques

we used to create the stream temperature model, and the

climate models used to provide the inputs.

Stream temperature model

To predict the two stream temperature metrics (MWMT and

M30AT) for the 309 CRCT segments, we developed and com-

pared stream temperature models for each metric using three

different statistical methods. Our models predict stream tem-

perature from three types of covariates: air temperature, sum-

mer stream flow, and a set of landscape and geomorphic

variables. Each CRCT segment was made up of multiple smal-

ler stream reaches, defined by discrete NHDPlus reaches.

Stream temperatures were predicted for each stream reach

and then averaged for the CRCT segment, to estimate the

mean thermal conditions for each CRCT population. We used

this approach to dampen the effects of unsuitably warm or

cold reaches, and assumed that fish could find refuge in other

suitable reaches when they are available within a given stream

fragment.

Stream temperatures. Stream temperature records were gath-

ered from online US Geological Survey (USGS) records, state

and federal agencies, and university researchers. These

records were variable in duration and timing, so we used spe-

cific criteria to select a subset that fit our needs. We included

© 2013 Blackwell Publishing Ltd, Global Change Biology, 19, 1383–1398
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only records from known geographical locations (with X and

Y coordinates) that encompassed at least one full summer sea-

son (June–September). We treated each year as an indepen-

dent observation point, but limited the data from each site to

3 years. When sites had longer records, we used the maxi-

mum, minimum, and middle (closest to the mean) years for

MWMT and M30AT to avoid biasing results by using more

than 3 years of observations from one site, and to help achieve

spatial balance across our sampling locations.

We obtained stream temperature records for 363 sites and

we were able to use 274 of them for our stream temperature

model, resulting in 482 observation points of summer stream

temperature. The temporal resolution for all records ranged

between 15 and 60 min. We found few stream temperature

records from the Upper Green River and Uinta Mountains in

the northwest part of the basin, and from southern areas of

the basin. Therefore, to increase the spatial distribution of

stream temperature data, we also used records from 15 sites

nearby in the Great Basin (Thomas and Smith’s Forks of the

Bear River) to the northwest, and 18 in the Rio Grande River

basin to the southeast.

Model covariates. We used ArcGIS 9 (ArcMap 9.3.1; ESRI

Redlands, CA, USA) and extracted attributes for each thermo-

graph site from multiple databases. Covariates were chosen

based on previous regional stream temperature models (Weh-

rly et al., 2009; Isaak et al., 2010) and mechanistic studies of

stream thermal budgets (Webb et al., 2008). This previous

research indicated that ambient temperature, geomorphology,

and landscape position are important drivers and predictors

of stream temperature. We selected 11 covariates, of which

two measured air temperature, two measured summer stream

flow, three indicated landscape position, and four represented

geomorphic characteristics (Table 2).

To estimate air temperature for high-elevation areas

throughout the upper Colorado River basin, we created a

database of all the SNOTEL sites (http://www.wcc.nrcs.usda.

gov/snow/) within the basin in Colorado, Wyoming, and

Utah that had continuous daily air temperature data from

1986 to 2010. We then determined the closest (via Euclidian

distance) SNOTEL site from each thermograph site and used

it to estimate the air temperature covariates for that thermo-

graph site. Air temperatures were summarized using the same

short-term (MWMT) and long-term (M30AT) summer thermal

metrics used for water temperature. We obtained records for

34 sites in the SNOTEL network that fit our criteria for use in

stream temperature models.

We also gathered data for stream flow, for use as a regional

indicator of the relative magnitude of annual summer flow

which also influences water temperature. First, we used a

nation-wide database of USGS stream flow gages (http://

waterdata.usgs.gov), and selected those that are minimally

affected by water diversions and dams (Falcone et al., 2010).

We summarized summer flows (June–August) by calculating

two metrics, summarized annually: (i) the overall mean daily

discharge (Q_sumr), and (ii) the relative summer flow (i.e., the

mean flow for a given summer divided by the long-term mean

for that site; Q%_sumr) for the period of record at each gage.

We selected 54 gage sites that fit our criteria. Lastly, we deter-

mined the closest (Euclidian distance) gage with an overlap-

ping temporal range for each thermograph site, and used data

from it to calculate the flow covariates for that thermograph.

For each thermograph site, latitude (Latitude) was deter-

mined using GPS coordinates; point elevation (Elv_pt) was

estimated using a 30 m resolution digital elevation model

from the National Elevation Dataset (NED; http://ned.usgs.

gov/) and GIS tools; and elevation of the stream reach

(Elv_rch) was estimated from the NHDPlus dataset which

Table 2 Model selection results for the multiple regression models to predict the two stream temperature metrics, based on the

Akaike information criterion (AICc). The AICc scores for the best model for each temperature metric are shown in bold and

underlined. See text for definitions of variables

AICc

Model Covariates MWMT M30AT

1 Air temp. Latitude Drng_area* Slope Aspect Elv_rch‡ Q_sumr¶ 2374.63 2110.90

2 Air temp. Latitude Drng_area Slope Aspect Elv_rch Q%_sumrk 2380.67 2109.42

3 Air temp. Latitude Drng_area Slope Aspect Elv_pt§ Q_sumr 2384.18 2117.45

4 Air temp. Latitude Drng_area Slope Aspect Elv_pt Q%_sumr 2389.78 2115.44

5 Air temp. Latitude Twi+ † Elv_rch Q_sumr 2395.94 2118.94

6 Air temp. Latitude Twi+ Elv_rch Q%_sumr 2402.07 2118.10

7 Air temp. Latitude Twi+ Elv_pt Q_sumr 2408.10 2136.60

8 Air temp. Latitude Twi+ Elv_pt Q%_sumr 2413.85 2135.36

*Cumulative upstream drainage area.

†Topographic wetness index plus (Theobald, 2007).

‡Average elevation for an entire stream reach.

§Elevation at the thermograph point.

¶Average summer (June–September) stream discharge.
kSummer (June–September) discharge as a percentage of annual average discharge.

© 2013 Blackwell Publishing Ltd, Global Change Biology, 19, 1383–1398

CLIMATE CHANGE EFFECTS ON TROUT IN STREAM FRAGMENTS 1389



reports the average elevation for each stream reach. Four geo-

morphic characteristics were measured for each thermograph

site: slope, cumulative drainage area [Drng_area], aspect (esti-

mated at the point location of the thermograph), and Topo-

graphic Wetness Index+ [TWI+; a measure of potential for

overland flow based on solar insolation, hillslope, and aspect].

We used the NHDPlus stream network data layer to deter-

mine the slope (estimated from values within each stream

reach) and cumulative drainage area for the NHDPlus stream

reach in which each thermograph site was located. We used

30 m resolution NED and GIS tools to determine aspect and

TWI+ (LCaP v1.0; Theobald, 2007) for each thermograph site.

Model development. We used three different statistical mod-

eling techniques to explore the ability of the covariates to pre-

dict stream temperatures. These three approaches varied in

complexity, and were evaluated using cross-validation proce-

dures. We performed separate analyses for MWMT and

M30AT to determine the best approach for predicting each

stream temperature metric.

The simplest modeling technique was multiple linear

regression (LR). Eight subsets of covariates were used when

fitting this model to avoid colinearity among several corre-

lated variables (e.g., elevation of the segment vs. elevation of

the point; Table 2). We used model selection based on an

information-theory criterion (Burnham & Anderson, 2002) to

select the top model (i.e., the subset of covariates with the low-

est Akaike information criterion, corrected for small sample

size; AICc) for each stream temperature metric. We evaluated

the same set of eight predictive candidate models for both

stream temperature metrics.

Second, to account for potential spatial autocorrelation of

lotic thermal conditions, we used universal kriging (UK; Stein

& Corsten, 1991). The advantage of using UK is the ability to

integrate the predictive power of covariates in a linear fashion

while also incorporating the spatial autocorrelation of the

residuals, to gain additional predictive power using geo-

statistical methods. We used the covariates from the top

model identified in our LR analysis (above) along with the X

and Y coordinates of each site to create variograms and deter-

mine the best fit given the spatial structure of the residuals.

Finally, we also fit models using the machine-learning

regression tree technique termed Random Forests (RF; Cutler

et al., 2007). We used the entire set of covariates for this

approach, because the method produces and then combines a

suite of different models based on the covariates. Using RF

maximized our predictive potential, but sacrificed some ability

to interpret individual covariates. An advantage of RF over

LR and UK is that no assumptions are made about the distri-

bution of data or the nature of relationships between predictor

and response variables (Cutler et al., 2007). We used standard

option settings for our RF, which included a maximum of 500

trees and selecting from three variables at each split.

To select the best predictive model for each stream tempera-

ture metric based on our three statistical techniques, we used

a ten-fold cross-validation technique, with unique subsets. We

compared the average root mean square prediction error

(RMSPE; Power, 1993) across all ten-folds as a measure of

model fit for the three statistical techniques. For each metric,

the model with the lowest RMSPE was used to predict stream

temperature metrics in subsequent analyses.

Climate projections. To represent future climate conditions

(i.e., air temperature and stream flow), we used dynamically

downscaled output from a regional climate model (RegCM3;

Hostetler et al., 2011). Compared to statistical downscaling,

dynamical downscaling depicts climate processes more accu-

rately in areas of complex terrain. In brief, RegCM3 produces

high resolution climate projections (15 9 15 km grid cells)

using a GCM to represent boundary conditions. We used out-

put from RegCM3 for two GCM inputs (MPI ECHAM5 [ECH]

and PSU/OSU GENMOM [GNM]; Hostetler et al., 2011) and

the A2 emission scenario, which assumes higher emissions

and thus serves as a worst case situation (IPCC, 2007). The

two GCMs used for these projections have similar sensitivities

to increases in CO2 (ECH 2–4 °C; GNM 2–3 °C). Predictions
from the ECH model for temperature and precipitation are

close to the average of eight commonly used GCMs, whereas

predictions from the GNM model are biased toward cooler

and wetter projections (Hostetler et al., 2011). Our goal was to

examine the influence of the average future climate at two

time horizons (2040 and 2080), so we averaged climate model

output for each GCM from three periods: 2005–2010 (current

scenario; no projections were available for 2000–2004), 2035–

2045 (short-term; 2040), and 2075–2085 (long-term; 2080).

Although we realize that fish populations also may be

strongly affected by extreme climate events (e.g., drought and

heat waves; IPCC, 2007; Meehl et al., 2009), unfortunately cur-

rent climate models are unable to predict these events with

sufficient accuracy to be useful for analyses like ours (Coumou

& Rahmstorf, 2012).

We used these dynamically downscaled climate projections

for surface air temperature and total runoff as inputs to the

stream temperature model to predict M30AT and MWMT

under future conditions. We used the predicted surface air

temperature from the grid cell within which each SNOTEL

site was located. We used the model output for total runoff

and ArcGIS 9.3 hydrology tools to estimate changes in stream

flow for each gage site. To avoid model bias (i.e., consistent

differences between model output and observed values), we

determined the percentage change in modeled air temperature

and total runoff from the average current values to the aver-

ages for the short- and long-term future periods, for each cli-

mate model. We then calculated the future values by

multiplying the current (2000–2009) observed values (i.e.,

those from the SNOTEL and flow gage databases) by these

percentages, and used these in our stream temperature model

to make predictions of future water temperature.

Predictions of CRCT population persistence

We predicted the two water temperature metrics for each of

the NHDPlus reaches that make up each CRCT segment using

the best model of stream temperature for each metric, along

with the covariates and climate projections described previ-

ously. The midpoint of each NHDPlus stream reach was used
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to determine the closest SNOTEL site and gage station from

which the predicted air temperature and stream flow values

where gathered. Stream temperature predictions for each

NHDPlus reach were then averaged for each CRCT segment,

and these were used with the CRCT segment length as input

to the BN model to predict the relative probability of persis-

tence for each CRCT population. To examine regional trends

for these CRCT populations, we summarized model outputs

for the eight major river basins (i.e., 4-digit USGS Hydrologic

Unit Codes). All BN development and analyses were per-

formed using Netica software 4.16 (Norsys Software Corp.,

Vancouver, BC, Canada). All stream temperature model fitting

and prediction analyses were performed using the statistical

package R 2.14.2 (R Development Core Team, 2012) with the

following libraries: geoR (Ribeiro & Diggle, 2001) and ran-

domForest (Liaw & Wiener, 2002).

Results

Stream temperature model

Model selection. We determined that the best subset of

covariates (based on AICc) to predict MWMT and

M30AT differed only in the identity of the summer flow

covariate (Table 2; Table S5; Fig. S8). Based on the

RMSPE, the best model for MWMT was the RF model

whereas the best M30AT model was the UK model

(Figs S2 and S3). The prediction error (i.e., RMSPE) for

the best-supported model was less for M30AT (1.98 °C)
than MWMT (2.79 °C), and both of these are similar to

the RMSPE reported for other regional stream tempera-

ture models (e.g., Wehrly et al., 2009). These three mod-

eling techniques differed most in their ability to

accurately predict high stream temperatures (>20 °C
M30AT; >25 °C MWMT). At these high temperatures,

predictions of M30AT by the UK model were closest to

the observed values most often (in 25 of 34 cases where

observed values were >20 °C; Fig. S4), and predictions

of MWMT by the RF model were closest to the

observed values most often (in 16 of 34 cases where val-

ues were >25 °C; Fig. S5). However, the best models

predict high M30AT values better than high MWMT

values, and both models underestimate these high tem-

peratures. As a result, the models will tend to overesti-

mate our predictions of growth, and especially

survival, at high temperatures, requiring us to be con-

servative in our conclusions about CRCT population

persistence in segments predicted to have high temper-

atures.

Predicted thermal conditions for CRCT populations. We

summarized the predicted thermal conditions for

CRCT segments by averaging across the two dynami-

cally downscaled GCMs. Overall, the models predicted

little change in either stream temperature metric by

2040, but by 2080 these temperature metrics are

predicted to increase 0.3–1.8 °C, on average (Table 3;

see S-Stream temperature model covariate assessment

for model structure). However, none of the 823 NHD-

Plus reaches within the 309 CRCT segments are pre-

dicted to be lethal to CRCT by 2080 (i.e.,

MWMT � 26.0 °C; Table S1; Fig. S6), and <1% are pre-

dicted to have temperatures too warm for growth (i.e.,

M30AT � 20.0 °C), although these results may be con-

servative (see above). In addition, the model predicts

that by 2080 only 128 reaches (16%) will have

MWMT � 23.0 °C, the approximate temperature

where our model begins to underestimate MWMT val-

ues (Fig. S5). These results indicate that high tempera-

tures are unlikely to cause widespread outright

mortality, or even low growth, by 2080. In contrast, a

large percentage (86%) of NHDPlus stream reaches are

predicted to have M30AT between 9.1 and 18.0 °C, and
thus be optimal for growth and recruitment in 2080

(Table S1; Fig. S6). Variation in M30AT predictions, as

indicated by the standard deviation (SD), was greatest

in areas with the fewest temperature records (e.g., Uinta

Mountains, Upper Green River; Fig. S7).

Bayesian network model

Model sensitivity and behavior. The conditional probabil-

ity tables for the two child nodes with more than one

parent input node show how each unique combination

of node states influences habitat capacity and probabil-

ity of CRCT population persistence (Tables S2 and S3).

The two types of sensitivity analyses show that predic-

tions of CRCT population persistence are always most

sensitive to the predicted values of M30AT (Table S4;

Fig. 3). For our application of this BN over the range of

variable values found among CRCT populations, pre-

dicting CRCT persistence is most sensitive to M30AT

and second most sensitive to fragment length, whereas

CRCT persistence is least sensitive to time and MWMT

(Fig. 3a). When evaluating our BN over the entire range

of each input variable, predicting CRCT persistence is

again most sensitive to M30AT, and second most sensi-

tive to MWMT (Fig. 3b). These results validate that our

BN model captures the intended processes and interac-

tions sufficiently to jointly address the effects of frag-

ment length and changing thermal conditions on CRCT

population persistence.

Predicted persistence of CRCT populations. The persis-

tence of CRCT populations predicted from the BN

model shows almost no change by 2040, but by 2080

there is an overall decrease in population persistence

(Table 3). More detailed analysis revealed that CRCT

populations in fragments � 7 km long have a high pre-
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dicted probability of persistence to 2080. In contrast,

those in short fragments � 4 km long are predicted to

have much lower probability of persistence, and the

predicted persistence of those 2–4 km long are most

likely to decline significantly by 2080 (Fig. 4). More-

over, warming of some reaches in cold high-elevation

CRCT segments around the midlatitudes in the eastern

portion of the UPCO basin actually increases the pre-

dicted persistence of those populations. In contrast, the

CRCT populations in short segments at lower eleva-

tions appear to be at the greatest risk of extirpation

from climate change–induced factors by 2080, although

populations with a predicted persistence <0.50 make

up a small proportion for any subbasin (Fig. 5). Even

the major river drainages in the southern half of the

basin that have few populations (e.g., Dolores, San

Juan, and Lower Colorado) were not predicted to lose

many entire populations. The Upper Green drainage

basin is predicted to have the most robust CRCT popu-

lations, likely owing to a combination of longer frag-

ments and higher latitude.

Discussion

Our results indicate that the current restricted distribu-

tion of CRCT populations reduces the potential thermal

impacts of climate change, but the high degree of frag-

mentation increases their susceptibility to catastrophic

stochastic events. Although the stream temperature

models predict continued warming of headwater habi-

tats in the upper Colorado River basin from the present

through 2080, in many locations water temperatures

remain well within the range suitable for thriving

CRCT populations. For a small number of these CRCT

segments conditions are actually predicted to improve

because streams are currently too cold for adequate

reproduction (Harig & Fausch, 2002; Coleman &

Fausch, 2007a). However, the shorter the stream frag-
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Fig. 3 Tornado diagrams showing the sensitivity of predicted

Colorado River cutthroat trout (CRCT) persistence to each node

in the Bayesian network (BN) model. Shown are the sensitivity

results for the range of values found in the CRCT database (a)

and for the theoretical maximum range of each input variable

(b).

Table 3 Mean current and predicted values for stream physical and thermal characteristics, and persistence of Colorado River cut-

throat trout (CRCT) populations. Maximum weekly maximum temperature (MWMT; °C) and maximum 30-day average tempera-

ture (M30AT; °C) are shown for the 2000s (2000–2009), along with the predicted change in these stream temperature metrics (°C) by
2080 (2075–2085). Values for CRCT population persistence are shown for the current period (2000s; 2000–2009) and through short-

term (2040; 2035–2045) and long-term (2080; 2075–2085) time horizons for each major upper Colorado River drainage basin

River basin*
CRCT

populations

Stream

length

(km)

MWMT

2000s

M30AT

2000s

MWMT

change by

2080

M30AT

change by

2080

CRCT

persistence

2000s

CRCT

persistence

2040

CRCT

persistence

2080

Upper Green 68 15.0 18.5 12.1 1.2 1.0 0.89 0.89 0.86

Lower Green 37 17.0 19.0 13.9 1.3 1.0 0.86 0.86 0.82

Yampa 58 11.7 19.9 14.3 1.1 1.1 0.81 0.81 0.78

Upper

Colorado

82 7.0 16.0 11.5 1.4 1.1 0.69 0.70 0.72

Gunnison 29 5.8 16.3 12.3 1.8 1.2 0.72 0.72 0.69

Dolores 5 6.8 17.7 13.7 0.3 0.9 0.89 0.89 0.84

San Juan 12 6.3 15.9 11.5 0.7 1.0 0.77 0.77 0.75

Lower

Colorado

18 4.9 18.2 14.0 0.7 1.0 0.73 0.73 0.68

*See Fig. 5 for location of basins.
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ment, the greater the risk of extirpation for populations

as a result of stochastic events or small population size.

When we consider both fragment length and stream

temperatures and how they interact to influence CRCT

population persistence, our BN results indicate that

CRCT populations in short fragments of 4 km or less,

especially those at lower elevations, are most suscepti-

ble to extirpation by 2080. In contrast, populations in

fragments of 7 km or longer are predicted to have a

high probability of persistence to 2080.

Potential reductions in suitable habitat for salmonids

worldwide owing to climate warming have been exam-

ined since the 1990s (Nakano et al., 1996), and two early

studies predicted substantial decreases (16–72%) in

suitable habitat for cold water fishes in the Rocky

Mountain region (Keleher & Rahel, 1996; Rahel et al.,

1996). These studies assumed a 1–5 °C increase in mean

air temperature, and adjusted the range limits of salmo-

nids to higher elevations based on the relationship

between elevation, latitude, and air temperature. Flebbe

et al. (2006) used a similar method and also predicted a

large loss of suitable habitat (53–97%) for three species

of wild trout in Appalachian Mountain streams.

These studies predicted broad declines in salmonid

distributions at lower elevations and latitudes, but

other investigators have pointed out that the climate

response of salmonids will depend on the ecological

setting, and will interact with other aquatic and terres-

trial processes. For example, Rieman et al. (2007) pre-

dicted a 27–99% loss in suitable habitat for bull trout

(Salvelinus confluentus) in the northern Rocky Moun-

tains with a 0.6–5.0 °C increase in mean air tempera-

ture. The reason is that warming water temperatures

will restrict bull trout to habitat patches too small in

area to support their migratory populations, based on

empirical data. Loss of suitable thermal habitat for bull

trout, which are among the most sensitive salmonids to

warming, can also be exacerbated by land uses like

deforestation and natural disturbances such as wildfire

(Isaak et al., 2010). In contrast, nonnative rainbow trout

(Oncorhynchus mykiss), which tolerate warmer tempera-

tures, are less susceptible to such habitat losses in these

same basins. In a more sophisticated analysis, Wenger

et al. (2011) predicted that negative effects of nonnative

brook (Salvelinus fontinalis), brown (Salmo trutta), and

rainbow trout will interact with changes in temperature

and stream flow, driven by climate change, to reduce

available habitat for native cutthroat trout by nearly

60% throughout much of the inland western USA by

2080. Paradoxically, increased winter rain is projected

to scour eggs of fall-spawning brook and brown trout

from gravel spawning nests, making conditions more

favorable for spring-spawning cutthroat trout because

they are currently reduced by competition and preda-

tion from the nonnative fall-spawning trout (Wenger

et al., 2011). Similar to our findings, these studies high-

light the importance of including multiple variables in

addition to temperature when evaluating the potential

consequences of climate change for native fishes.

Our results also indicate that fragment length is an

important variable that can interact with the increased

environmental variability that will accompany climate

change to influence CRCT population persistence. Short

stream fragments reduce the potential fish population

size by restricting available habitat (Young et al., 2005),

placing populations at risk from inbreeding depression

and genetic drift. Reducing the available habitat also

decreases the amount of refuge habitat, thereby increas-

ing the susceptibility of a population to hazards from

stochastic events such as wildfire, debris flows, and

stream drying or freezing. These classic threats to the

conservation of small populations in fragmented habi-

tats (Caughley, 1994) are accentuated when combined

with variability induced by climate change.

Fragmentation has been shown to have catastrophic

consequences for populations of native salmonids

(Brown et al., 2001; Morita et al., 2009). In Japan, exten-

sive networks of dams in rivers have restricted many

populations of charr and landlocked salmon to water-

sheds of only 1–10 km2 (Morita & Yamamoto, 2002;

Endou et al., 2006). This extreme fragmentation is a

threat to population persistence owing to the loss of

groups of fish with different life history strategies,

which leads to reduced numbers of spawning fish, small

population sizes, and the loss of potential rescue effects

from migratory fish (Morita et al., 2009). Fragmented

populations (0.4–6.1 km) of endangered Gila trout (On-

corhynchus gilae) have been extirpated during and after

wildfires, and remaining populations are at risk from

stochastic events (Brown et al., 2001). Short stream frag-

ments increase the risk of extirpation from these stochas-

tic events because they often lack internal habitat refugia

found in longer segments (Rieman & Clayton, 1997).

Our models do not predict broad-scale declines in

thermal habitat suitability for CRCT in the upper Colo-

rado River basin, as have some previous studies for sal-

monids in the Rocky Mountain west. This is primarily

because the range of CRCT has already been drastically

reduced by >80% from invasive trout and land uses

that degrade habitat (Hirsch et al., 2006; Young, 2008;

Cook et al., 2010). The amount of CRCT habitat already

lost is similar to the amount predicted to be lost from

future climate change for other salmonids across North

America (Flebbe et al., 2006; Wenger et al., 2011). There-

fore, our analysis emphasizes the importance of

addressing the regional-scale ecological setting (i.e., his-

torical habitat loss) when examining potential impacts

of climate change for biological populations.
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Although many CRCT populations have already

been lost, our modeling indicates that many remaining

populations are relatively secure, and suggests promis-

ing avenues for future conservation to offset the risks of

climate change. For example, the BN predicts that 170

of 309 (55%) CRCT conservation populations have a

better than 70% chance of persistence to 2080 (Fig. 5),

largely because they occur in stream fragments of suffi-

cient length to buffer against stochastic disturbances.

However, a common rule of thumb for conservation

biology is that a population is considered vulnerable

(as defined by the IUCN) if it has <90% chance of per-

sistence over the next 100 years (Mace & Lande, 1991).

Based on this more stringent criterion, only 37% of

CRCT populations are secure from extirpation to 2080.

Therefore, foremost among management options will

be to prevent further fragmentation and habitat loss,

and to lengthen fragments, where possible, by remov-

ing barriers and nonnative species from adjacent

reaches.

Paradoxically, the fact that extant populations of

CRCT are restricted to higher elevations and are

thereby relatively resilient to warming temperatures

gives managers options to increase resilience further by

increasing fragment length to buffer against stochastic

disturbances. In particular, peripheral populations at

the southern extent of CRCT distribution, which we

originally predicted would be sensitive to warming, are

at high elevations and the chances of persistence for

many could be increased if stream fragments were

lengthened. In contrast, managers of coldwater aquatic

species in other regions may have few options for con-

serving the remaining populations given the predicted

inexorable temperature increases.

Although the BN model projects that temperature

increases will be a lesser problem for most CRCT popu-

lations than for other native salmonids (e.g., bull charr),

it would still be prudent to temper rising stream tem-

peratures by restoring and maintaining channel mor-

phology and riparian vegetation. These actions can

protect important groundwater sources and provide

shading for lower elevation CRCT streams, which we

predict are closer to stressful thermal conditions.

The unique approaches used in our analysis afforded

us insights that have not been possible in previous

broad assessments of potential climate risks for native

salmonids. Specifically, using a large network of local

stream temperature data to create a regional stream

temperature model, instead of relying solely on air tem-

perature, allowed direct predictions of effects on key

life history events like growth, reproduction, and mor-

tality. Likewise, using a spatially explicit database of

the entire distribution of CRCT in streams (Hirsch et al.,

2006) allowed us to make temperature predictions at

the scale of individual stream fragments, and then use

these to make empirical predictions of persistence.

Several caveats are important to consider when

assessing the accuracy of our model predictions. First,

our analysis indicated that the stream temperature

model may predict maximum stream temperatures that

are several degrees low, so that some stream reaches

may be above lethal limits (MWMT > 26.0 °C) even

though none were predicted to exceed this threshold.

However, only 16% of the 823 NHDPlus reaches and

9% of the 309 CRCT segments were predicted to exceed

a lower threshold for MWMT of 23.0 °C by 2080, where

underestimates become more frequent, so this inaccu-

racy apparently had few consequences for our results.

Second, we note that the predicted runoff patterns used

in these stream temperature models are based on pre-

cipitation forecasts from RegCM3, which are more vari-

able across multiple GCMs than the air temperature

predictions from these models (Hostetler et al., 2011).

A third caveat is that we assumed no change in fragment

size over time. If stream drying, new nonnative trout

invasions, or changes in human land or water use fur-

ther reduce the length of fragments, then we predict

greater risk for CRCT populations, which our BN

model can be used to estimate. Future modeling efforts

should focus on the consequences of such increasing

fragmentation.

Climate change is a major threat to many aquatic eco-

systems and biota, but interactions of these physical

changes with other stressors will be of equal or greater

importance for biological conservation (Rahel & Olden,

2008). Currently, CRCT occupy a small proportion of

their historical range, primarily at high elevations in

relatively short stream fragments. Given this ecological

setting, it is not surprising that increased water temper-

atures are not predicted to be a major threat to most

populations. However, the interacting negative effects

of stochastic risks from wildfire, debris flows, and

stream drying and freezing, coupled with small frag-

ment lengths pose a threat for many. Even though we

projected persistence for relatively short periods of 30

and 70 years, only 37% of the extant populations met

the standard conservation criterion of a � 90% chance

of persistence over the longest period modeled (to

2080).

Future CRCT conservation efforts should focus on

preventing further loss of habitat from CRCT segments,

and expanding segment length for these isolated popu-

lations where possible. These efforts could be aided by

the tools we developed for this study, including the

regional stream temperature model and the BN model

of CRCT population persistence. These tools would be

particularly useful to evaluate potential future habitat

expansions for CRCT and other native salmonids, and
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can help ensure that limited conservation resources are

allocated to habitats best suited for species persistence

under changing climatic conditions. Overall, this study

highlights that explicitly accounting for interactions

between climate change and other components of the

ecological setting, like stream fragment length, will be

critical when predicting impacts of future climate con-

ditions on imperiled aquatic biota.
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