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Robust spatially aggregated projections of
climate extremes
E. M. Fischer*, U. Beyerle and R. Knutti

Many climatic extremes are changing1–5, and decision-makers
express a strong need for reliable information on further
changes over the coming decades as a basis for adaptation
strategies. Here, we demonstrate that for extremes stakehold-
ers will have to deal with large irreducible uncertainties on local
to regional scales as a result of internal variability, even if cli-
mate models improve rapidly. A multimember initial condition
ensemble carried out with an Earth system model shows that
trends towards more intense hot and less intense cold extremes
may be masked or even reversed locally for the coming three to
five decades even if greenhouse gas emissions rapidly increase.
Likewise, despite a long-term trend towards more intense
precipitation and longer dry spells, multidecadal trends of op-
posite sign cannot be excluded over many land points. However,
extremes may dramatically change at a rate much larger than
anticipated from the long-term signal. Despite these large
irreducible uncertainties on the local scale, projections are
remarkably consistent from an aggregated spatial probability
perspective. Models agree that within only three decades about
half of the land fraction will see significantly more intense hot
extremes. We show that even in the short term the land fraction
experiencing more intense precipitation events is larger than
expected from internal variability. The proposed perspective
yields valuable information for decision-makers and stakehold-
ers at the international level.

Significant changes to more hot and less cold extremes and
record events have been observed over several regions1–3 and
identified in globally aggregated approaches4,5. Attribution studies
argue that anthropogenic influence has enhanced the probability
of the occurrence of some types of temperature and precipitation
extremes occurring6–11. Recent projections suggest that these
trends continue along with rising anthropogenic greenhouse
gas emissions12–16. Model simulations from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) project pronounced
warming of the annual temperature maxima (TXx, hereafter
referred to as hot extremes, see Methods) and minima (TNn,
cold extremes) as well as widespread changes in maximum
five-day accumulated precipitation (RX5day, heavy precipitation
intensity) and annual maxima of consecutive number of dry
days (CDD, dry spell length)17. The changes by mid-century
(2041–2060) shown in Fig. 1 (left) based on an extended set of
25 CMIP5 models (see Supplementary Information) are largely
consistent with those projected for the end of the twenty-first
century in refs 12,13. Projections for all four extreme indices are
associated with very large uncertainties12. At many grid points
individual models simulate warming of hot and cold extremes
that is almost twice the multimodel mean (Supplementary Fig.
1, right) and others show hardly any change or even a slight
cooling at some grid points despite the strong global warming in
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the Representative Concentration Pathway 8.5 (RCP8.5) scenario
(Supplementary Fig. 1, left). Uncertainties are even larger for
precipitation extremes. Despite a general tendency towards heavier
precipitation intensity and longer dry spells, opposite trends are
found at most grid points by 2041–2060 in at least two models
(Supplementary Fig. 1).

Do these uncertainties point to major model deficiencies
that prevent us from making any reliable projections in climate
extremes? Not necessarily. We show here that the uncertainties
largely result from internal climate variability and would remain
even in a perfect model. To quantify the role of internal variability
that is unpredictable owing to initial condition uncertainties, we
run the Community Earth System Model (CESM) 21 times from
1950–2100 with slightly differing atmospheric initial conditions
(hereafter referred to as CESM-IC) but otherwise identical model
configuration and forcing (historical and RCP8.5; see Methods;
Supplementary Figs 2 and 3). The CESM-IC multimember mean
(Fig. 1, right) shows changes remarkably similar to the CMIP5
multimodel mean (Fig. 1, left). Even using one single model the
low estimates (5th percentile, second lowest member) and high
estimate (95th percentile, second highest member) for the 20-year
mean changes in cold and hot extremes by the mid-century locally
vary from −1 ◦C to +7 ◦C for cold and +1.5 ◦C to 5.5 ◦C for hot
extremes, respectively (Supplementary Fig. 4). Likewise, different
members do not agree on the sign of changes in dry spell length and
heavy precipitation intensity.

We refer to the multimember mean across CESM-IC (Fig. 1,
right), as an estimate of the forced signal, that is, the response
to the imposed forcing in the absence of variability. The
departures from this forced signal arise from internal variability
inherent to the coupled climate system (for example, modes of
variability such as the El Niño–Southern Oscillation, Madden–
Julian Oscillation or short-term synoptic variability)18. Daily
extremes are particularly sensitive to variability on decadal,
interannual to subseasonal timescales19,20. CESM-IC samples only
this internal variability, whereas CMIP5 additionally samples
parametric and structural model uncertainties. By mid-century the
uncertainty range induced by internal variability (here expressed
as 2σ across CESM-IC locally) corresponds on average to roughly
40% of the CMIP5 uncertainty for hot and 60% for cold extremes,
and more than 75% for heavy precipitation intensity and dry
spell length (Supplementary Fig. 5). About 10 years after the
initial perturbation, the timescale of decadal predictability, the
multimember range across CESM-IC no longer increases in time
(Supplementary Fig. 3) and covers roughly the same uncertainty
range as an eleven-member CESM ensemble initialized from
different starting points in the control simulations (different
ocean initial conditions, not shown). The uncertainties in CESM-
IC need to be interpreted with caution as they are based
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Figure 1 | Changes in extremes by the mid-twenty-first century. Projected changes in intensity of hot extremes (TXx, first row) and cold extremes (TNn,
second row), heavy precipitation intensity (RX5day, third row) and dry spell length (CDD, last row) in 2041–2060 with respect to 1986–2005 for the
RCP8.5 scenario. The left panels show the multimodel mean average changes across 25 CMIP5 models and the right panels the multimember average
across 21 CESM-IC members.

on the assumption that CESM reliably represents the internal
variability in extreme indices. The assumption that the estimate
is reasonable is supported by the fact that the uncertainties across
CESM-IC are consistent with a ten-member initial condition
ensemble for the Commonwealth Scientific and Industrial Research
Organisation model (CSIRO-Mk3-6-0; Supplementary Fig. 5),
the largest ensemble available in the CMIP5 archive, and the
fact that the simulated interannual variability, the dominant
contribution to internal variability, in the extremes indices is in
reasonable agreement with the ERA Interim and NCEP-DOE-2
reanalyses as well as the gridded observational HadEX2 and
GHCNDEX data sets. Except for the interannual variability in
heavy precipitation intensity over the tropics, which is biased

low, the variability in the reanalyses for the period 1986–2005
falls within the range of variability realizations of the CESM-IC
members (see Supplementary Figs 6 and 7 and evaluation section
in Supplementary Information).

The role of uncertainty induced by internal variability has
been shown to be dominant for decadal and seasonal mean
changes in the next decades21,22. We here argue that for changes
in extremes it is the dominant uncertainty source even for
several decades. The role of internal variability generally decreases
if mean temperatures or extreme indices are averaged across
regions23 or the globe. For instance, all the CESM-IC members
show very similar global temperature increases by the end of
the twenty-first century (Supplementary Fig. 2). However, large
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Figure 2 | Uncertainties in projected trends of extremes. a–d, Range of lowest to highest regional linear trends in CESM-IC (blue cones) and CMIP5 (red
cones) for the periods 2005–2035 and 2005–2060. For illustrative purposes the linear trends are adjusted so that they all start with the same value in
2005. The thick lines mark the CMIP5 multimodel mean (thick red lines) and CESM-IC multimember mean trend (thick blue lines). The 11-year running
means of the annual indices are shown for each CMIP5 model (red) and each CESM-IC member (blue). Projected trends are averaged for TNn across land
grid points in Northern Europe (a, 48–75◦ N, 10◦W–40◦ E), for TXx averaged over Southern Europe and the Mediterranean (b, 30–48◦ N, 10◦W–40◦ E),
for RX5day averaged over eastern North America (c, 25–50◦ N, 50–85◦W) and for CDD averaged over Southern Australia (d, 30–45◦ S, 110–155◦ E).

uncertainties in temperature and precipitation extremes remain
even if multidecadal trends are averaged across large regions,
as shown here in illustrative examples (Fig. 2). Averaged across
northern Europe individual members show warming trends in
the cold extremes of <1 ◦C to >6 ◦C for the period 2005–2060.
Likewise, some members show no trend in heavy rainfall intensity
until 2060 over eastern North America, whereas others project an
increase at twice the rate of the mean long-term forced signal.
This divergence of linear trends induced by internal variability is
even more pronounced for trends from 2005–2035. On the century
timescale (2005–2100) regional trends are more robust. We also
expect a lower sensitivity to internal variability in extreme indices
quantifying the exceedance frequency of moderate thresholds that
mainly follow themean changes such as TN90 or tropical nights12,17.
However, if the forced signal is small or the variability large as for
dry spell length in SouthernAustralia (Fig. 2d), wewould not expect
models or CESM-IC members to agree on the sign even by the end
of the twenty-first century24,25.

Our findings underline that it will not be possible to provide
the information on local changes in extremes that would be
desirable for local stakeholders. The uncertainty owing to internal
variability is dominant and is essentially irreducible, as there is
no atmospheric predictability on multidecadal timescales, while
the model uncertainty can potentially be reduced. For a robust
assessment of the forced model signal in extremes, which will
ultimately dominate the response on longer timescales, it is
necessary to carry out large initial condition ensembles as in ref. 26.
However, it would be dangerous to design a strategy to adapt
solely to a well-constrained forced signal. Instead, adaptation and
planning should take into account the range of possible outcomes,
which could ideally be derived from a large multimember ensemble
carried out with numerous models.

Does the lack of clear local trends preclude robust statements
about changes in extremes? Such an interpretation would be
clearly misleading. No simulation shows a pattern of quasi-uniform
reduction in heavy precipitation as in Supplementary Fig. 4, or any
of the other lowest or highest estimates at every grid point. The
internal variability rather induces an uncertainty on where changes
occur in different members. To illustrate this effect we calculate a
spatial probability density function (PDF) across the 20-year mean
changes at all land grid points between 66◦ S and 66◦N (Fig. 3). For
the cold and hot extremes the 20-yearmean changes are normalized
by the local σ across annual values of the extreme index in the
control period 1986–2005. The PDFs illustrate the land fraction
in CMIP5 models (red lines) or CESM-IC members (blue lines)
experiencing a certain change.

There is remarkable agreement among all CESM-IC members
that significant changes in temperature extremes occur in the next
decades. Already by 2016–2035 about 27–46% of the land area
experiences changes in hot extremes larger than 1σ and 16–30% for
cold extremes. Note that even in control simulations representing
an undisturbed climate state there would be local differences
in 20-year means of extreme indices at most grid points. The
distribution of these local differences is estimated from grid point
differences between all possible pairs of the 21 members in the
control period 1986–2005 (grey). The projected changes already
exceed those expected in an undisturbed climate by 2016–2035.
There is high agreement across CESM-IC members that within
only three decades (by 2016–2035 relative to 1986–2005) about
60–70% of the land fraction will experience significant changes
in hot and 42%–55% in cold extremes (Supplementary Fig. 8).
The remarkable agreement across CESM-IC illustrates that, despite
large local uncertainties induced by internal variability, the area
exhibiting certain changes is similar in each realization. As the
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Figure 3 | Spatial distribution of changes in hot and cold extremes. a–d, PDF of the land fraction (66◦ S–66◦ N) experiencing a certain 20-year mean
change in hot (a,c) and cold (b,d) extremes. 20-year mean changes are shown for the period 2016–2035 (a,b) and 2041–2060 (c,d) with respect to the
20-year mean in 1986–2005. Legend in a applies to all panels. The red lines mark individual models of CMIP5 and red shading the 5th to 95th percentile
across the models for each bin marking a certain change. Likewise the blue lines show the individual CESM-IC members and the blue shading the
respective range across different members. The changes expected owing to internal variability are shown as grey shading with the solid black line marking
the mean. Twenty-year mean changes at each grid point are normalized by the interannual standard deviation of the respective annual extreme index
values for 1986–2005. See Supplementary Fig. 10 for the corresponding figure with absolute temperature changes.

changes increase by the mid-twenty-first century, members still
agree on what fraction of the land experiences changes larger
than a given threshold. Also the CMIP5 models (red range) show
reasonably consistent changes in the spatial PDFs of temperature
extremes (Fig. 3). The differences between CMIP5 models largely
arise from their different transient global temperature response.
If corrected for, they also show a remarkably robust spatial PDF,
for example, for a 2 ◦C warming (Supplementary Fig. 9). Figure 3
does not show the absolute temperature changes, but even these
are reasonably consistent (Supplementary Fig. 10). Note that many
CMIP5 models have substantially heavier upper tails than CESM
members and the uncertainties across CMIP5 are particularly large
in the tail, which implies that model uncertainties are dominant for
the maximum warming.

Even for heavy precipitation intensity there is high agreement
across CESM-ICmembers and reasonable agreement across CMIP5
models on the land fractions experiencing certain changes (Fig. 4).
Already by 2016–2035 all CESM-IC members consistently project
more than 10% increase in heavy precipitation intensity at a land
fraction of 20–30%. Likewise, all CMIP5 models except INM-CM4
simulate substantial changes in the near future. For dry spell length
mostmodels showonly aweak signal and donot agreewhethermost
of the land fraction experiences longer or shorter dry spells. How-
ever, in many models the PDF widens, implying that a larger area
than expected by internal variability experiences longer dry spells by
the mid-century (Fig. 4). For all indices CESM-IC members show
good agreement, which suggests a potential to narrow down the un-
certainty in this spatial perspective with furthermodel development
as the spatial PDFs are hardly sensitive to internal variability.

To provide an analogy, it is impossible to predict the time and
location of the next traffic accident in a city. But there will be

one somewhere, so it makes sense to have an ambulance ready.
Higher speed limits will result in more accidents and will require
more ambulances, even if it remains impossible to predict the
locations of future accidents. Thereby some aggregated aspects are
predictable even if the single events are not. Our findings show that
with a global spatial probability perspective robust projections for
extremes are possible even for the near future. The perspective is
more informative than a global mean and when taking into account
local vulnerabilities it may be promising in many fields, such as the
reinsurance business with globally distributed portfolios, the global
commoditymarket or strategies for global food security.

The models used here do not resolve small-scale heavy pre-
cipitation events and have deficiencies in representing dynamical
features such as the blocking frequency and persistence driving
temperature extremes in mid-latitudes27. Moreover, the estimates
for interannual variability in precipitation extremes and therefore
the associated uncertainty are found to be rather low. Thus, we see
value in further refining and developingmodels even though uncer-
tainties in regional projection of extremeswill remain substantial.

Our findings imply that the traditional evaluation of the
projection agreement at the grid-point level has weaknesses.Models
disagree on the exact location of changes in precipitation owing
to differences in their present-day climatology28,29 and internal
variability23–25. But the perception that models allow no robust
statements about changes in the magnitude of extremes in the near
future ismisleading.We demonstrate that from a spatial probability
perspective, they provide remarkably robust evidence for more
intense hot and less intense cold extremes, and heavier precipitation
already on timescales of two or three decades. These are robust
even for single continents or large countries. For example, hot
extremes are projected to increase strongly in a large fraction of
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Figure 4 | Spatial distribution of changes in dry spell length and heavy precipitation intensity. a–d, Same as Fig. 3 but for heavy precipitation intensity,
RX5day (a,c) and dry spell length, CDD (b,d). Legend in a applies to all panels. In contrast to Fig. 3 changes at each grid point are expressed as percentages
with respect to the climatological mean 1986–2005.

Europe, the US, China and Australia in less than 30 years, and heavy
precipitation intensity is projected to increase in those regions over
50 years (Supplementary Figs 11 and 12), thus making the results
relevant for decision-makers that are concerned with impacts, cost
and adaptation on a national level.

Methods
Model experiment. The simulations are carried out with the CESM version 1.0.4
including the Community Atmosphere Model version 4 (CAM4) and fully coupled
ocean, sea ice and land surface components30. All simulations are driven with
historical forcing until 2005 and RCP8.5 until 2100. On 1 January 1950, a small
random perturbation of the order of 10−13 is imposed on the atmospheric initial
condition field of the reference run to produce a 21-member initial condition
ensemble (here referred to as CESM-IC) covering the period 1950–2100. All
simulations share the same model version, emission scenario and initial conditions
except for the atmosphere. The set-up is very similar to the one described in
refs 18,22. After the initial perturbation to the atmospheric initial conditions the
model is run freely as a fully coupled Earth system model with no perturbation
imposed on any run at any point during the simulation until the end of the run in
2100. Owing to the same ocean initial state the different realizations have similar
annual mean temperatures in the first year. However, because of the chaotic nature
of the climate system manifesting itself in the internal variability, after a few years
the members are in an entirely different state of variability in the ocean, sea ice and
atmosphere and thus show a completely different evolution even of global mean
temperatures (Supplementary Fig. 2).

Extreme indices. The following standard definition of extreme indices17 adapted
from the Expert Team on Climate Change Detection and Indices for calendar years
are used consistent with recent comprehensive analysis of the CMIP5 experiments12.
All indices are calculated on an annual basis (calendar year):

Intensity of hot extremes (TXx): let TX be the daily maximum temperature,
then TXx is the annual maximum value of TX.

Intensity of cold extremes (TNn): let TN be the daily minimum temperature,
then TNn is the annual minimum value of TN.

Dry spell length or consecutive dry days (CDD): PRij is the daily precipitation
amount in mm on day i in period j. Count the largest number of consecutive days
per time period (here calendar year) where PRij <1mm.

Heavy precipitation intensity or maximum accumulated five-day precipitation
(RX5day): let PRk be the precipitation amount in mm for the five-day interval
ending on day k. Then RX5day is the annualmaximum value of PRk .

Spatial PDFs. To produce the spatial PDFs in Figs 3 and 4, we calculated changes
of 20-year averages of extreme indices at each land grid point (66◦ N–66◦ S)
between the future and reference period (1986–2005). For temperature extremes
(Fig. 3) the local changes are normalized by the standard deviation (in the same
model and member, respectively) across the 20 values for the same index in
the period 1986–2005. For precipitation extremes the changes are expressed as
percentage changes with respect to the local mean of the same model or member
in the period 1986–2005. The grid points falling in each bin of the PDF have been
weighted according their latitude-dependent area. The PDFs are derived from
a rectangular kernel density estimate in statistical package R with only a very
weak smoothing applied to retain the information one would see in a histogram.
For each member and model the PDFs illustrate the land fraction exhibiting a
certain change. The red and blue bands are calculated as 5th to 95th percentile
interval for each bin.
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