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Ecological corridors are landscape elements that prevent the negative effects of fragmentation. However,
their effectiveness has never been clearly validated in urban landscapes.

We analysed the role of green corridors in an urban context by comparing metacommunities of arthro-
pods in (i) woodlots considered as sources of species, (ii) woody corridors and domestic gardens that are
(iii) connected (CG) or (iv) disconnected to corridors (DG) and taking into account the connectivity of the
matrix. We trapped 3 taxa of arthropods – spiders, carabids and staphylinids – because they are sensitive
to fragmentation but with different dispersal capabilities. We analysed their species richness, abundance
and taxonomic and functional composition.

For the 3 taxa, the taxonomic and functional compositions of communities in CG were closer to those of
the corridor and the source than those of DG. Woodland species were associated with source, corridor
and CG. A lower abundance in DG was revealed for staphylinids and spiders. Lower species richness in
DG was observed for staphylinids.

The differences between taxa could be explained by the dispersal capabilities of the species and by
their various responses to landscape structures. For carabids, processes at a wider scale could be respon-
sible for their rarity in sources and, consequently, in gardens. For spiders, the colonisation from other
sources could explain the high species richness found in disconnected gardens.

Our results suggest that the role of corridors is crucial for enhancing biodiversity in green spaces such
as domestic gardens. Our results clarify the effectiveness of corridors in urban landscapes and have direct
implications for the ecological management of cities.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In urban landscapes, fragmentation, usually considered as a ma-
jor threat to biodiversity, dramatically affects landscape structure
and decreases landscape connectivity (Hamer and McDonnell,
2008; McGarigal and Cushman, 2002; McKinney, 2008; Pauchard
et al., 2006). Generally, the remaining woodland habitats in cities,
called green spaces (Smith et al., 2006a), are physically distant
from each other and are isolated by a hostile matrix composed of
buildings and streets (Collinge, 1996; Gibb and Hochuli, 2002).
Thus, fragmentation limits the dispersal of many species and
strongly shaped metacommunities sensu (Wilson, 1992), i.e.
potentially interacting species linking via dispersal (Hubbell,
1997; Leibold et al., 2004; McKinney, 2006; Rosindell et al., 2011).

Indeed, in more natural landscapes, ecological corridors are an
effective strategy to limit biodiversity decline within fragmented
woodland habitats (Bailey, 2007; Gilbert-Norton et al., 2010). Con-
sequently, the protection of corridors and green frameworks is a
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major objective of landscape management policies (Jongman
et al., 2004). In urban landscapes, the development of woody cor-
ridors could be an interesting way to limit fragmentation and en-
hance ‘‘ordinary biodiversity’’ as desired by citizens (Ahern,
2007; Blair and Johnson, 2008; Savard et al., 2000). In fact, matrix
properties and the use of corridors in cities are different than in
more natural landscapes, and previous results cannot be easily ap-
plied in urban areas. The effects of ecological corridors in an urban
context need to be properly tested (Clergeau, 2007; Gilbert-Norton
et al., 2010).

The aim of this study is to assess the effectiveness of corridors in
suburban landscapes using arthropod metacommunities of urban
domestic gardens. Although domestic gardens are small in area,
they are numerous, and they represent a significant proportion of
green space area in cities (Goddard et al., 2010; Loram et al.,
2007). The potential role of domestic gardens in urban conserva-
tion has been shown by recent studies (Davies et al., 2009; Loram
et al., 2007). However, the mechanisms responsible for the struc-
ture of communities in gardens have not been clearly identified.

It is urgent to better understand the importance of dispersal in
the structuring of communities and, thus, in the functioning of
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metacommunities (Holyoak et al., 2005). To this aim, a comparison
of community responses to landscape structure using different
taxa with different dispersal behaviours should be meaningful
(Fattorini, 2011; Le Viol et al., 2008; Schweiger et al., 2005). Thus,
we focused our study on 3 major taxa of arthropods: spiders, cara-
bids and staphylinids (Didham et al., 2010; McIntyre et al., 2001).
As these species vary in preferences for habitat and in dispersal
capabilities, the community properties of these three taxa are
indicative of both local and landscape modifications. Some cara-
bids (Chapman et al., 2005; Joyce et al., 1999) and staphylinids
(Markgraf and Basedow, 2002; Tomlin et al., 1992) were able to
disperse several kilometres by flying and some spider species up
to tens of kilometres using their silk (Bell et al., 2005). Some spe-
cies (mainly woodland species for carabids and staphylinids), were
ground dwelling and thus are extremely sensitive to physical bar-
riers such as road or buildings (Desender et al., 2005; Mader et al.,
1990). Moreover, they are located at an intermediate level on food
webs: as predators of smaller arthropods (Good and Giller, 1991;
Griffiths et al., 2007; Nyffeler and Sunderland, 2003) and prey for
vertebrates (Deichsel, 2006; Thomas et al., 2001) and thus have a
major ecological function.

To analyse the effectiveness of corridors, we compared the rich-
ness, abundance, taxonomic and functional composition of meta-
communities in woodlots considered as a source, woody
corridors linked to the sources, and hedgerows of two types of gar-
dens - disconnected from (DG) or connected (CG) – to the corridor.
We then focused our analyses on gardens to control for effects of
local variables and landscape variables. As the measure of land-
scape connectivity should not be limited to corridors (Gaublomme
et al., 2008; Lizée et al., 2011; Prevedello and Vieira, 2010), we also
took into account the properties of the matrix surrounding the
gardens.
2. Materials and methods

2.1. Study area and sampling design

To test the effectiveness of woody corridors in gardens within
urban matrices, we defined a strict sampling design at four urban
s03
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s02

s04

(A)

Paris region

Fig. 1. Map of the Paris region showing urban sites (A) and schema of the sampling desig
represented in black. Urban cover is represented in grey. Sites are indicated by white circ
(C), 4 connected gardens (CG) and 4 disconnected gardens (DG).
sites (s01 to s04) located around Paris (see Fig. 1). The four sites
have been selected regarding to their landscape configuration. In-
deed, each site was composed of an urban matrix composed of a
mosaic of roads and small detached houses with domestic gardens,
a unique urban woodlot (park or wood up to 150 ha) in a 1.5 km
radius that was potentially the only source for arthropods (Chave,
2004), to avoid the effect of uncontrolled potential sources of
arthropods, and a woody corridor (between 20 and 50 m wide)
(Davies and Pullin, 2007) .

Within each urban matrix, we selected two types of gardens.
First, we selected four connected gardens (CG) contiguous or less
than 10 m from the corridor. Two CG were located between 20
and 300 m from the source and two were located between 500 m
and 1 025 m. As a control (Gilbert-Norton et al., 2010), we also se-
lected four gardens located more than 300 m from corridor and de-
fined as disconnected gardens (DG). To avoid the correlation
between the distance to source and the type of garden, we selected
DG located at the same distance from sources. We also checked for
correlation using Mann–Whitney test, W = 377.5, p = 0.07) and
using site as a random effect in a generalised linear mixed models
(Distance to woodlot � connection to corridor + site, b = 0.07
(SE = 0.22), p = 0.73).

In all sites, the dominant vegetation of the woodlots and corri-
dors is mixed deciduous and is dominated by native oaks (Quercus
spp). The lower strata of vegetation are mainly composed of Rubus
fructicosus and Hedera sp. All gardens have hedgerows.

Thus, we sampled metacommunities of arthropods simulta-
neously in four sources, four corridors, sixteen CG, and sixteen
DG (Fig. 1).

Arthropods were sampled using pitfall traps of 8.5 cm wide in
diameter, 10 cm deep and contained a non attractive preservative
(ethylene glycol). They were settled with a minimum of 5 m be-
tween traps. At each site, we set one station of four traps within
the source, three stations of three traps within the corridor. In gar-
dens we only set one station of two traps under hedgerows as it
was difficult to set more traps separated under hedgerows. A total
of 116 traps were laid for this study. Arthropods were trapped con-
tinuously from May to July 2009 (all traps were emptied once after
3 weeks).
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2.2. Identification and species attributes

Adult arthropod species were identified using classical keys. As
immature arthropods are difficult to identify, they were not con-
sidered in our analyses, and Atheta species (Family Aleocharinae,
staphylinids) were considered as Aleo. spp.

We recorded two functional traits: dispersal mode and habitat
affinity. We defined two classes for the dispersal mode: (1) non-
aerial dispersal and (2) aerial dispersal. We also defined three clas-
ses for habitat affinity to woodlands: (1) specialist open land spe-
cies and generalist species that are more abundant in open land
habitats, (2) generalist species without habitat focus and (3) gener-
alist species more abundant in woodland and specialist species of
woodlands. For carabids and staphylinids, the classifications fol-
lowed Deichsel (2006) and were completed respectively by Ribera
et al. (2001) and through interviews with specialists (Tronquet,
pers. com). For spiders, high dispersal capability correspond to aer-
ial dispersal using silk, also know as ballooning and species listed
in Bell et al. (2005) were considered as aerial dispersers. For spi-
ders, habitat affinity was coded following Harvey et al. (2002)
and completed by Entling et al. (2007). Details of traits are given
in Supplementary Material 1.

2.3. Environmental variables

Within each site, we measured at the landscape scale, we mea-
sured the connection to the corridor (CG/DG) and the distance be-
tween garden and source (Dist) (Smith et al., 2006a). We also
described the matrix surrounding gardens. From a normalised dif-
ference vegetation index (NDVI, resolution of 15 m, 11 classes of
land uses), considered as a relevant descriptor of urban landscapes
(Kerr and Ostrovsky, 2003; Yuan and Bauer, 2007), we considered
three land use classes: build surface, gardens and woodlands.
Using FRAGSTATS software (McGarigal, 2002), we characterised
the composition and the configuration of the landscape surround-
ing each garden by calculating several metrics in a circular buffer
of 200 m centred on gardens (excluding source and corridor). We
measured four metrics for each of the three land use classes: per-
centage of the class in the buffer (per), patch density which mea-
sured the fragmentation (FRAG), area-weighted mean patch
fractal dimension which measured the patch shape complexity
(FRACTAL) and the aggregation index that measured the structural
connectivity (AI). These twelve metrics were synthesised in a con-
nectivity matrix index (CMI) using a PCA (coordinates of sites in
axis 1, 54.84% of the total inertia) (Supplementary materials 3 for
details).

At the local scale, we measured sixteen variables (vegetation
cover, soil features, hedgerows, surfaces, and management (Sup-
plementary material 2). None of these variables were correlated
to the type of garden (Supplementary materials 2). Using the same
method than for matrix description, we tried to find a synthetic
variable of the local scale but as in other studies on gardens, we
failed (Smith et al., 2006a). Thus we retained the vegetation cover
because it was correlated with many variables (Supplementary
material 3). Moreover, vegetation cover is known to strongly affect
arthropod composition in woody habitats (Magura et al., 2008;
Small et al., 2006) and is an important feature of domestic gardens
(Smith et al., 2006b). Note that vegetation cover under hedgerow
(Veg) was described for a 4 � 4 m square around each trap and
was classified into five categories (0–10; 11–25%, 26–50%, 51–
75%, 76–100%).

2.4. Statistical analysis

We analysed the metacommunities of arthropods by consider-
ing three complementary approaches. First, we analysed species
richness (SR) and abundance (AB). Next, we made a more accurate
analysis using taxonomic composition and finally, we analysed the
functional composition of the metacommunities using habitat
affinity and dispersion traits.

For each approach, we made two distinct analyses. First, we ran
a global analysis comparing all types of green spaces. Second, we
ran a specific analysis on gardens (hereafter called garden analysis)
to verify the effects of the connection to the corridors, the CMI, the
distance to the source, and accounting for vegetation cover (Gil-
bert-Norton et al., 2010). After measure of data and prior to garden
analysis, we checked for relationship between all variables used in
models (Supplementary material 2). To take into account the dif-
ference in sampling effort between the different types of green
spaces, all analyses were computed at the trap level.

2.4.1. Species richness and abundance
The species richness and abundance of arthropods were ana-

lysed with generalised linear mixed models (GLMM) with a link
log function and a Poisson error structure, relevant for count data
(Bolker et al., 2009). According to the nested structure of our sam-
pling design (stations within sites), we treated the site variable as a
random effect (Noda, 2004), while the other explanatory variables
were treated as fixed effects. We used a hypothesis approach for
each step of analyses (Faraway, 2006). The analyses were com-
puted with R 2.7.0 software and the lme4 package (Bates and
Maechler, 2009).

2.4.2. Taxonomic and functional composition
We analysed analyse the effect of corridor on the taxonomic

and functional composition of the arthropods using a partial
Redundancy Analysis (pRDA). pRDA is a constrained ordination
method related to principal components analysis which that al-
lows community composition to be related to environmental vari-
ations (Legendre and Anderson, 1999). As a partial method, it can
be used to remove the effect of covariables. In our case we used
the geographical coordinates of sites (x_coord, y_corrd) to correct
for spatial correlation. For taxonomic composition analysis, data
were transformed using the Hellinger distance to limit the weight
of rare species and of the double – absence of species (Legendre
and Gallagher, 2001).

Functional composition was handled using pRDA with the same
covariable and a community weighted trait matrix as response var-
iable (CWM) (Lavorel et al., 2008).

As pRDA was sensitive to rare species, we did not retain species
observed once (singletons). ANOVA-like permutation tests
(n = 999) were conducted to assess significance of the all analysis
and for each term of the model.
3. Results

3.1. Species richness and abundance

Across the 4 sites, we captured 1262 adult individuals of spi-
ders, 398 of carabids and 1446 of staphylinids, representing,
respectively, 75, 25 and 61 species. The most abundant species
were Lepthyplantes flavipes (23.14%), Ozyptila praticola (12.68%)
and Zodarion italicum (6.10%) for spiders; Nebria brevicollis (22%),
Notiophilus rufipes (25%) and Harpalus atratus (10%) for carabids;
and Aleo. spp (40%), Anotylus inustus (12%) and Platarea brunnea
(10%) for staphylinids.

Using GLMM, we found an effect of the green space type for sta-
phylinids and spiders. We observed lower species richness within
the DG for staphylinids than within the other green spaces
(sources, corridors and CG) and a lower abundance within the
DG for staphylinids and spiders (Table 1).



Table 1
Generalised linear mixed models (GLMMs) showing the differences between sources and the other green space types in term of species richness (SR) and abundance (AB) using
site as a random effect. For SR and AB, b and SE were transformed into mean species richness per trap and mean abundance with SE per trap using an exponential function, and
significance levels were given (denoted ⁄p 6 0.05, ⁄⁄p 6 0.001, ⁄⁄⁄p 6 0.001). Connected gardens (CG), Disconnected gardens (DG).

Spiders Carabids Staphylinids

SR (SE) AB (SE) SR (SE) AB (SE) SR (SE) AB (SE)

Sources 5.71 (1.24) 13.3 (1.31) 1.31 (1.38) 1.5 (1.84) 3.32 (1.3) 11.82 (1.47)
CG 4.94 (1.13) 10.96 (1.15) 1.58 (1.22) 2.19 (1.42) 3.32 (1.16) 11.16 (1.24)
DG 4.09 (1.14) 6.5 (1.16) 1.16 (1.24) 1.84 (1.43) 1.29 (1.21)⁄⁄⁄ 3.87 (1.26)⁄⁄⁄

Corridors 4.52 (1.14) 9.33 (1.18) 1.25 (1.24) 1.68 (1.48) 3.03 (1.18) 11.14 (1.27)
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For garden analysis, the abundance was significantly lower in
the DG for spiders and staphylinids (respectively b = �0.49
(SE = 0.23), p = 0.03 and b = �0.98 (SE = 0.32), p = 0.002). Species
richness was also significantly lower in DG for staphylinids
(b = �0.67 (SE = 0.17), p 6 0.001). The abundance of carabids sig-
nificantly decreased with the distance to source (b = �1.01
(SE = 0.42), p = 0.02) and was affected by vegetation cover
(b = 1.52 (SE = 0.4), p 6 0.001). For carabids, we found a significant
negative effect of distance to source (b = �0.46 (SE = 0.20), p = 0.02)
and a positive effect of CMI on species richness.
3.2. Taxonomic composition

As shown by pRDA, corridors, sources, CG and DG supported
significantly different metacommunity compositions of spiders,
carabids and staphylinids (p < 0.01 for the 3 taxa). However, the
metacommunities in the CG were close to the metacommunities
of the corridors (Fig. 2). The garden analyses (Table 2 and Fig. S1)
confirmed that the difference between CG and DG was mainly
due to the connection with the corridor. CMI was significant for
carabids and staphylinids whereas the distance to source was sig-
nificant only for carabids.

The pRDA (Fig. 2) showed that the spider species Diplocephalus
picinus (Diplopic) and Diplostyla concolor (Diplcon) were more
associated with sources whereas Trachyzelotes pedestris (Traped),
Tenuiphantes flavipes (Tenfla) and Z. italicum (Zodita) were associ-
ated with the corridors and CG. DG were associated with Troxoch-
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rus scabriculus (Troxsca) and Erigone dentipalpis (Eriden). For
carabids, we observed that Abax parallelepipedus (Abapar), Calathus
fuscipes (Calruf) and Pterostichus madidus (Ptemad) were associated
with sources whereas N. brevicollis (Nebbri), Harpalus rufipes (Har-
ruf), N. rufipes (Notruf) were associated with the corridor and the
CG. H. atratus (Haratr) were the only species associated with DG.
For staphylinids, we observed that A. inustus (Anoinu) and Plata-
raea brunnea (Plabru) were more associated with sources whereas
Anthobium atrocephalum (Antatro) and Omalium rivulare (Omariv)
were associated with corridors and CG. Aleo. spp was the only spe-
cies associated with DG.

The garden analysis confirmed the association between the pre-
vious species and the different garden type (Fig. S1).
3.3. Functional composition

For carabids, staphylinids and spiders, we found a significant
relationship between species traits and environmental variables
(Fig. 3) (respectively p 6 0.01, p 6 0.01 and p 6 0.05). The green
space type influenced the distribution of species according to their
habitat affinity. For spiders, we observed that sources, character-
ised by a community with high affinity to woodlands, were sepa-
rated from the CG, DG and corridors. For carabids and
staphylinid, sources, corridors were at the extremity of a gradient
representing the decrease of the affinity to woodland habitat and
the increase of the dispersal capabilities. DG were at the other
extremity of this gradient and were functionally characterised by
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Table 2
Taxonomic and functional composition of spider, carabid and staphylinid communities in gardens using partial redundancy analysis (pRDA). Significance level (denoted. p < 0.1,
⁄p 6 0.05, ⁄⁄p 6 0.001, ⁄⁄⁄p 6 0.001) are given for the entire model and for each term with an anova like permutation method (n = 999) (CG/DG, connection to the corridor;
Dist = distance to the woodlot, CMI = connectivity matrix index, Veg = vegetation cover under hedgerows).

Spider Carabids Staphylinids

Taxonomic
composition

Functional
composition

Taxonomic
composition

Functional
composition

Taxonomic
composition

Functional
composition

Full
model

1.23. 0.6 2.77⁄⁄ 2.78⁄ 2.22⁄⁄ 3.75⁄⁄

Details
CG/DG 1.81⁄ 0.21 5.79⁄⁄⁄ 2.90⁄ 3.02⁄⁄ 6.51⁄⁄

Dist 0.71 0.18 2.15⁄ 1.42 0.88 1.63
CMI 1.31 1.77 1.91⁄ 5.92⁄⁄ 2.15⁄⁄ 6.22⁄⁄

Veg 0.29 0.24 1.21 2.88 0.97 0.59
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communities with high dispersal capabilities and low affinity to
woodlands. For carabids, CG were at an intermediate position
along this gradient whereas CG were functionally closer to corridor
and sources for staphylinids.

For carabids and staphylinids, the garden analysis confirms that
the connection to corridor (CG) and the CMI have positive effect for
the habitat affinity and for species with low dispersal capabilities
(respectively p 6 0.01and p 6 0.05) (Fig. S2). We observed a signif-
icant effect of the distance to source (Dist) only for carabids.

4. Discussion

In this study, we assessed the effectiveness of green corridors,
and in a less extent the connectivity of matrices, in enhancing bio-
diversity of urban domestic gardens. For the three taxa, we found
close results on the taxonomic composition. Some differences were
observed on functional compositions that could be explained by
the dispersal capabilities of the species and by their various re-
sponses to landscape structures. Our results provide important
information to be applied by land managers for sustainable plan-
ning of cities.

4.1. Positive effects of corridors

We highlighted that corridors strongly influenced the arthropod
metacommunities of the surrounding gardens in urban landscapes
and enhanced the dispersal of many species. Indeed, we observed
that taxonomic and functional compositions of carabids, staphyli-
nids and spiders communities of CG were closer to those of the cor-
ridors and the sources than the communities of DG. We observed
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identical results for the three taxa that reveal strong underlying
general processes in structuring community, such as dispersal lim-
itation (Rosindell et al., 2011; Schweiger et al., 2005). Communities
with low dispersal capabilities were associated with sources, corri-
dors and CG, but less for spiders. Moreover, woodland affinity was
associated with source, corridors and CG. Because woodland spe-
cies function mostly in metapopulations (Petit and Burel, 1998),
they are more sensitive to fragmentation and thus need corridors
more than other species. By enhancing dispersal, corridors not only
allow an increase of physical linkage between green spaces, but
they also ecologically link green spaces and enhance the functional
connectivity of urban landscapes.

For staphylinids, the effect of corridors was found even for spe-
cies richness and abundance, both lower in DG compared with the
other green spaces. Staphylinids are widespread taxa of arthropods
that exhibit a great number of species and that seem to be sensitive
to fragmentation (Deichsel, 2006; Michaels, 2007) and are particu-
larly interesting for analysing the effects of urbanisation (Bohac,
1999; Deichsel, 2006; MacIvor and Lundholm, 2011). Without cor-
ridor connection, the community of staphylinids in DG was com-
posed of few species with strong dispersal capabilities, allowing
them to fly over many kilometres in cities (Tomlin et al., 1992).
Moreover, source, corridor and CG were characterised by flightless
species such as P. brunnea. As shown by the garden analysis, con-
nection to corridor mostly explained these results. Contrary to
many studies, the vegetation cover described here had a weak
effect on arthropod metacommunities (Alaruikka et al., 2002; Le
Viol et al., 2008; Niemelä et al., 2002; Small et al., 2003). The low
variability of vegetation cover under hedgerows could explain this
result. We regrouped many species in Aleo. spp representing 40% of
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the total abundance, results on species richness of staphylinids
should be tempered.

4.2. Heterogeneous response of taxa to landscape

Despite the similarity of some of the results, we observed sev-
eral differences between taxa that could illustrate a heterogeneous
response to landscape structure. The role of dispersal and local fac-
tors in community structure is an ongoing debate. Niche Assembly
Theory considers that local factors and associate processes such as
competition or facilitation mainly drive community composition
(Gaston and Chown, 2005; Macarthur and Levins, 1967; Massol
et al., 2011). In contrast, United Neutral dispersal assembly theory
(UNT) highlights the central role of dispersal on shaping metacom-
munities (Hubbell, 2005; Rosindell et al., 2011).In our study, the
sensitivity of metacommunities to isolation effects and, more gen-
erally, to landscape structure seems to depend on the dispersal
capabilities of species (Goodwin and Fahrig, 2002; Holyoak et al.,
2005). For carabids, mechanisms acting at wider scales (e.g., regio-
nal scale) and limiting dispersal could explain their rarity (McDon-
nell and Hahs, 2008; Whittaker et al., 2001). We did not find a
lower species richness or abundance in DG for carabids, and they
were extremely rare in gardens. In other studies conducted on ur-
ban domestic gardens, carabids represent an important part of
abundance, for example 18% of all invertebrates, 60% of beetles
and spiders in (Smith et al., 2006a). The rarity of carabids in gar-
dens could be explained by a ‘‘source problem’’. Indeed, carabids
were rare even in sampled woodlots considered as sources for their
local properties (e.g., vegetation and size) (a total of 25 species and
421 individuals and only 10 species and 50 individuals of wood-
land carabids were captured). The role of urbanisation should be
investigated as is known to strongly affect the diversity of wood-
land carabids (Croci et al., 2008; Gaublomme et al., 2008; Magura
et al., 2010; Small et al., 2006). As the species richness and abun-
dance of carabids were low in sources, they could not act as
sources for propagules and could not be efficiently colonised corri-
dors or, consequently, CG. Thus, the abundance of carabids in gar-
dens was negatively affected by distance to source. Thus, CG close
to the source supported more woodland carabids. More studies
need to be conducted to clarify the effect of large scale mechanisms
on carabids communities (McDonnell and Hahs, 2008; Whittaker
et al., 2001).

Our results thus suggest both the importance of dispersal and
niche processes in the structure of community (Gaston and Chown,
2005; Mouillot, 2007). We did not find a lower species richness in
DG for spider metacommunities. Contrary to carabids, the species
richness and abundance of captured spiders were comparable with
others works conducted in urban landscapes (Alaruikka et al.,
2002). Using ballooning, a majority of spiders can disperse from
hundreds metres to hundreds of kilometres (Bell et al., 2005).
However, Bonte et al. (2003) suggest that ballooning is negatively
linked to the degree of specialisation, especially for woodland spe-
cies. Thus, corridors may facilitate the dispersal of woodland spe-
cies between source and connected gardens, but many generalist
species coming from other sources could easily reach disconnected
gardens, resulting in increased species richness.

Factors at the local scale, such as the composition of habitats,
microclimatic conditions or patch area, could strongly shape spider
metacommunities (Entling et al., 2007; Le Viol et al., 2008). Sources
and gardens are quite different in local conditions. However, we
did not find differences on local factors between CG and DG. Works
on domestic gardens are still rare, and clear patterns of the effect of
local factors have not been identified yet (Smith et al., 2006a).
Interspecific competition has been suggested by some authors.
For example, as a mechanism to explain spider community struc-
ture, interspecific competition could explain the exclusion of gen-
eralist species by woodland specialists (Connell, 1983; Wise, 2006)
and, in turn, may explain the similar richness detected within CG
and DG. For spiders, our results suggest the importance of both dis-
persal and niche processes in the structure of metacommunities
(Gaston and Chown, 2005; Mouillot, 2007). Finally, despite a differ-
ent taxonomic composition, communities in DG and CG shared a
close functional composition. Further analyses focused on spiders
and involving more traits were needed to analysed in what extent
functional composition of spiders were not by landscape
properties.

4.3. Importance of the urban matrix

We found that the connectivity of the matrix (CMI) surrounding
gardens also shaped the taxonomic and functional composition of
carabids and staphylinids. As showed by some authors, matrix
properties could play a major role in the landscape connectivity
and in corridor efficiency (Baum et al., 2004; Prevedello and Vieira,
2010; Rosenberg et al., 1997). In urban context, the matrix could
strongly structure the communities and sometimes overpass spe-
cies area relationship (Lizée et al., 2011). As showed by their effects
on carabid species richness, some elements of the urban matrix as
buildings or roads affected the dispersal of ground dwelling species
but also of species flying at low altitude (Mader et al., 1990)
whereas garden seem less impermeable to the dispersal of those
species. Spider communities were not affected by the CMI. The
majority of the species mainly present in gardens seem to have
high dispersal capabilities and thus were not sensitive to the prop-
erties of the matrix.

4.4. Conclusions and application for landscape planning of cities

Our results suggest that both the role of corridors and in a less
extent the urban matrix are crucial for enhancing biodiversity in
urban green spaces such as domestic gardens. Using an indirect
measure of spider, carabid and staphylinid dispersal (Jacobson
and Peres-Neto, 2010), we show that, as in more natural land-
scapes, urban green corridors enhance dispersal and limit the ef-
fects of isolation by urban matrix. In cities, social and
recreational values of corridors are well known (Savard et al.,
2000). Ecological role of urban green corridors is supposed by
many authors but was rarely clearly identified (Ahern, 2007). This
study highlights their ecological role effects in maintaining ordin-
ary biodiversity in highly fragmented landscapes and thus argues
for the role of green corridors as an important part of green infra-
structure for cities.

Using a multi taxa approach to analyse the effect of fragmenta-
tion, we underlined the major role of dispersal capabilities in land-
scape structure response and, thus, on metacommunity
functioning (Hubbell, 1997; Leibold et al., 2004; McKinney, 2006;
Rosindell et al., 2011). Processes acting at a wider scale, such as
urbanisation, could be responsible for the rarity of some the weak
dispersers, such as woodland carabids. Indeed, spiders and sta-
phylinids, most of which have stronger dispersal capabilities than
carabids, were abundant in the sources (Alaruikka et al., 2002;
Deichsel, 2006). Our results highlight the importance of managing
urban landscape at a wider scale and of reconnecting urban green
spaces, including houses with domestic garden areas with more
natural sources into regional green frameworks.
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