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wandering albatrosses, the movements of many
other species of albatrosses and petrels are strong-
ly constrained by wind conditions (8, 21), and
species richness of Procellariiformes is positively
associated to wind speed (22). Thus, future re-
search should consider wind fields as an impor-
tant driver of the distribution and migration of
these oceanic species.
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Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple
functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality).
However, the relationship between biodiversity and multifunctionality has never been assessed globally
in natural ecosystems. We report here on a global empirical study relating plant species richness and
abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface
and support over 38% of the human population. Multifunctionality was positively and significantly
related to species richness. The best-fitting models accounted for over 55% of the variation in
multifunctionality and always included species richness as a predictor variable. Our results suggest
that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and
desertification in drylands.

Two decades of research have revealed
causal linkages between biodiversity and
univariate measures of ecosystem func-

tioning, such as primary productivity or nitrogen

accumulation, in many terrestrial and aquatic
habitats (1–4). These relationships suggest that
the loss of biodiversity may impair the function-
ing of natural ecosystems and thus diminish

Fig. 4. (A) Changes in breeding success over the past 40 years (r2 = 0.30, P= 0.0003). From 1988 to 2009 only, r2 = 0.19, P= 0.048. (B) Changes over the past
20 years in the mass of breeding wandering albatrosses in January to February.
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the number and quality of services they provide
(5–7). Ecosystems are valued for their ability to
maintain multiple functions and services simul-
taneously [multifunctionality (8)]. If the main-
tenance of biodiversity is to be justified as a
strategy for enhancing ecosystem services (5, 9),
it is essential to understand how biodiversity
affects multifunctionality (8–10). Existing knowl-
edge comes from controlled small-scale experi-
ments from a limited number of ecosystems,
mainly in North America and Europe (8–12).
Furthermore, biodiversity is by no means the only,
or even the primary, driver of ecosystem func-
tioning, which is also influenced by other biotic
and abiotic factors (13, 14). Given this complexity,
a rigorous examination is needed of the role of
biodiversity in maintaining multifunctionality at a
large number of sites that represent awide range of
spatial variability in resource availability, abiotic
factors, and species richness and composition (15).

Arid, semi-arid, and dry-subhumid ecosystems
(called hereafter “drylands”) constitute some of
the largest terrestrial biomes, collectively cov-
ering 41% of Earth’s land surface and supporting
over 38% of the global human population (16).
Drylands host many endemic plant and animal
species (5) and include about 20% of the major
centers of global plant diversity and over 30% of
the designated endemic bird areas (17). These
ecosystems are also highly vulnerable to global
environmental change and desertification (16, 18).
Nevertheless, the relationship between biodiver-
sity and ecosystem functioning has seldom been
studied in drylands (19). We evaluated how the
richness of perennial vascular plants (hereafter
“species richness”) and a range of key abiotic
factors (climate, slope, elevation, and soil texture)
relate to multifunctionality in 224 dryland ecosys-
tems sampled from all continents except Ant-
arctica (map S1). We surveyed plots measuring
30 m × 30 m, which were large enough to rep-
resent the main ecosystem features at each site,
and assessed 14 ecosystem functions related to

the cycling and storage of carbon (C: organic C,
b-glucosidase, pentoses, hexoses, aromatic com-
pounds, and phenols), nitrogen (N: totalN,NO3

–-N,
NH4

+-N, aminoacids, proteins, and potential N
transformation rate), and phosphorus (P: availa-
ble inorganic P and phosphatase). These func-
tions were chosen because they deliver some of
the fundamental supporting and regulating eco-
system services (9, 18, 20) and because they are
used to identify the onset of desertification pro-
cesses (21). Our survey captured a substantial
range of the climatic conditions, ecosystem types,
and soil classes found in drylandsworldwide (fig.
S1 and map S1).

We first evaluated the direct relationship be-
tween species richness and multifunctionality at
the global scale using both nonspatial [ordinary
least-squares (OLS)] and spatial [simultaneous
autoregression (SAR)] regression models (20).
Because we did not experimentally control for
other abiotic and biotic factors that are known to
affect ecosystem functioning, significant relation-
ships would indicate potentially strong effects of
richness on multifunctionality. To quantify multi-
functionality, we calculated Z-scores (standardized
deviates) of the 14 functions evaluated (20). The
multifunctionality index M for each plot was the
average Z-score for all functions measured within
the plot. This index measures all functions on a
common scale of standard deviation units, has
good statistical properties, and is well correlated
with previously proposed indices for quantifying
multifunctionality (20) (fig. S4). Multifunction-
ality was positively and significantly (P < 0.05)
related to species richness, according to both OLS
and SAR models (Fig. 1A). Separate analyses of
functions related to the C, N, and P cycles (20)
also yielded positive and significant relationships
with species richness in all cases when using
OLS regression (Fig. 1, B to D). When SAR re-
gressions were used, significant relationships were
found only for functions related to C cycling
(Fig. 1, B to D).

We then evaluated whether the observed
effects of species richness were important as com-
pared to those of abiotic factors, with a multi-
model inference approach based on information
theory and OLS regression (22). We built sep-
arate models using the multifunctionality index
M and functions from the N, C, and P cycles as
dependent variables, and seven abiotic variables
[sand content, slope, elevation, and four compo-
nents derived from a principal-components anal-
ysis of 21 available climatic variables (20)] plus
species richness as potential independent varia-
bles. Among the 255 possible models resulting
from all possible combinations of these indepen-
dent variables, we selected the set of best-fitting
models that minimized the second-order Akaike
information criterion (AICc). Collinearity among
independent variables in these models was negli-
gible (20) (table S15).Whenever a model included
species richness as an important predictor, we
compared its AICc to that of the corresponding
model without species richness; differences < 2.0
in AICc between alternative models indicate that
they are approximately equivalent in explanatory
power (22). To account for potential effects of
spatial autocorrelation between sites, latitude and
longitude were included in all the models (23).

The best and most parsimonious models
(smallest AICc and fewest variables with compa-
rable AICc, respectively) describing global multi-
functionality contained 9 and 7 predictor variables
(Table 1). Both models explained more than 55%
of the variance found in multifunctionality, and
included species richness. In both cases, the re-
moval of species richness as a predictor variable
substantially reduced the model fit (Table 1).
These results were virtually identical to those ob-
tained with SAR regression and OLSmodels that
included quadratic terms, to account for potential
autocorrelation and nonlinear effects, respective-
ly (20) (tables S2 and S3), and for models that
used other multifunctionality indices proposed in
the literature (20) (table S13). Species richness
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was also an important factor in separate models
of C and N cycling (tables S4, S5, S7, S8, S10,
and S11) but had weaker effects on P cycling
(tables S6, S9, and S12). Overall, the general re-
sult that species richness makes important con-
tributions to multifunctionality was robust to
the analytical methods used and to the choice of
multifunctionality index.

To quantify the relative importance of the dif-
ferent predictors ofmultifunctionality,we summed
the Akaike weights for each predictor across all
themodels in which it occurred (20, 22); the larger
this sum, the more important a given variable is
relative to the other variables used in the same
models. By this criterion, the two most important
predictors of multifunctionality were annual mean
temperature [reflected in large negative loadings
for the fourth principal component of the climatic
variables (20)] and the sand content of the soil
(Fig. 2A). Both variableswere negatively related
to multifunctionality: Higher ecosystem func-
tionality was found at cooler temperatures and
lower sand content (table S14). The importance
of species richness was very similar to that of
mean temperature and sand content. Indeed, spe-
cies richness was more important than climatic
variables such as mean annual rainfall and mean
temperature and rainfall in the driest quarter [re-
flected in loadings on the first and third principal
components of the climatic variables, respective-
ly (20)]. Similar results were obtained when
functions related to the C and N cycles were eval-
uated separately (Fig. 2, B and C). Species rich-
ness was less important to P cycling than were

other abiotic factors such as sand content, eleva-
tion, and annual rainfall (Fig. 2D).

The positive effects of species richness on
multifunctionality may be mediated through in-
creased net primary production (NPP), which has
cascading effects on multiple organisms and eco-
system processes (1, 24). However, the relation-
ship between plant species richness and NPP is
uncertain (25), and NPP could not be measured
in this study. We speculate instead that comple-

mentarity in the use of resources such as water
(2, 9), which has been demonstrated in drylands
and can occur without changes in NPP (26, 27),
accounts for correlations between species rich-
ness and multifunctionality. Our results also im-
plicate soil water conditions, which are largely
affected by temperature and soil texture (28), as
an important driver of multifunctionality.

By itself, species richness accounted for only
a small fraction of the observed variation in the

Table 1. Best-fitting regression models of ecosystem multifunctionality. Each column represents a
different predictor variable (red, perennial plant species richness; green, abiotic variables; blue, climatic
variables; gold, geographic variables). Of all 255 possible models, the best 8 models are presented,
ranked according to AICc value. AICc measures the relative goodness of fit of a given model; the lower its
value, the more likely it is that this model is correct. Unshaded cells indicate variables that were not
included in a particular model. The first and third models of the table are the best and most parsimonious
models, respectively; the same models without species richness had R2 = 0.539, AICc = 293.236, D AICc =
10.486; and R2 = 0.515, AICc = 300.078, DAICc = 17.328, respectively. DAICc, difference between the
AICc of each model and that of the best model; wi, Akaike weights; C1, C2, C3, and C4, first, second, third,
and fourth components of a principal-components analysis conducted with climatic variables; SA, sand
content; SL, slope angle (square root–transformed); EL, elevation (square root–transformed); LA, latitude;
and LO, longitude.

Species 
richness

Abiotic Climatic Geographic R2 AICc AICc wi

SL SA C1 C2 C3 C4 LA LO EL
0.564 282.750 0 0.217
0.559 283.226 0.475 0.171
0.554 283.595 0.845 0.143
0.558 283.862 1.111 0.125
0.565 284.502 1.751 0.091
0.556 284.637 1.887 0.085
0.561 284.677 1.927 0.083
0.560 285.035 2.285 0.069

Fig. 1. Relationship be-
tween perennial plant
species richness and eco-
system multifunction-
ality (A) measured in a
global survey of drylands.
Similar relationships for
C (B), N (C), and P (D)
cycling are shown. Red
and green lines are the
fitted lines fromOLS and
SAR regressions, respec-
tively. Results of regres-
sions are as follows: (A)
OLS, R2 (percent of varia-
tion in multifunctionality
explained by the mod-
el) = 0.030, P = 0.009;
SAR, R2 = 0.022, P =
0.027; (B) OLS, R2 =
0.029, P = 0.011; SAR,
R2 = 0.022, P = 0.027;
(C) OLS, R2 = 0.018, P =
0.044; SAR, R2 = 0.014,
P = 0.082; and (D) OLS,
R2 = 0.032, P = 0.008;
SAR, R2 = 0.016, P =
0.061.
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multifunctionality of drylands (Fig. 1). However,
the best-fittingmodels accounted for over 55% of
this variation and always included species rich-
ness (Table 1). The unexplained variation prob-
ably reflects factors not measured in our global
survey, including the intensity of herbivory, his-
torical patterns of land use, the presence of key-
stone and invasive species, and differences in
components of biodiversity such as soil fauna,
whose changes along environmental gradients
do not necessarily track those of plant richness
(28–30).

Climate change models predict increases in
average annual temperature in drylands of up to
4°C by the end of the 21st century (31). Our
results suggest that such an increase will reduce
the ability of dryland ecosystems to perform mul-
tiple functions related to C, N, and P cycling.
Ongoing climate change is also likely to reduce
local species richness (32) and to increase the
extent of areas affected by desertification (16, 18),
both of which will negatively affect ecosystem
functioning. However, these outcomes are un-
certain because of the complex interactions and
contrasting effects of increases in temperature,
which we found to reduce multifunctionality, and
in atmospheric carbon dioxide concentrations,
which can ameliorate water stress in dryland
vegetation and potentially minimize biodiversity
losses (33, 34). Because the quality and quantity
of ecosystem services depend largely on ecosys-
tem functions such as those measured in this

study (5, 9), increased plant species richness may
enhance the services provided by dryland ecosys-
tems. Our findings also suggest that such richness
may be particularly important for maintaining
ecosystem functions linked to C and N cycling,
which sustain C sequestration and soil fertility
(18, 28). Because land degradation is often ac-
companied by the loss of soil fertility (16, 18),
plant species richness may also promote ecosys-
tem resistance to desertification.

The consistent effects of species richness on
multifunctionality over and above those of climate
and of abiotic factors highlight the importance of
plant biodiversity as a driver of multifunctionali-
ty in drylands. The positive relationship between
species richness and multifunctionality found is
consistent with experimental results obtained in
temperate grasslands and in microbial, biological
soil crust, and aquatic communities (8–12). Col-
lectively, these results suggest that the correlation
between species richness and multifunctionality
may be a general pattern in nature that reflects a
cause-and-effect linkage.
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Fig. 2. Relative importance of perennial plant species richness (red column) and other predictor variables
in models of ecosystemmultifunctionality (A) and C (B), N (C), and P (D) cycling. The height of each bar is
the sum of the Akaike weights of all models that included the predictor of interest, taking into account the
number of models in which each predictor appears. Variable abbreviations are as in Table 1.
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A DOC2 Protein Identified by
Mutational Profiling Is Essential for
Apicomplexan Parasite Exocytosis
Andrew Farrell,1* Sivasakthivel Thirugnanam,1* Alexander Lorestani,1* Jeffrey D. Dvorin,2,3*
Keith P. Eidell,1 David J.P. Ferguson,4 Brooke R. Anderson-White,1 Manoj T. Duraisingh,2†
Gabor T. Marth,1† Marc-Jan Gubbels1†

Exocytosis is essential to the lytic cycle of apicomplexan parasites and required for the
pathogenesis of toxoplasmosis and malaria. DOC2 proteins recruit the membrane fusion machinery
required for exocytosis in a Ca2+-dependent fashion. Here, the phenotype of a Toxoplasma gondii
conditional mutant impaired in host cell invasion and egress was pinpointed to a defect in
secretion of the micronemes, an apicomplexan-specific organelle that contains adhesion proteins.
Whole-genome sequencing identified the etiological point mutation in TgDOC2.1. A conditional
allele of the orthologous gene engineered into Plasmodium falciparum was also defective in
microneme secretion. However, the major effect was on invasion, suggesting that microneme
secretion is dispensable for Plasmodium egress.

The lytic replication cycle is central to the
pathology of apicomplexan diseases such
as malaria caused by Plasmodium spp.

and toxoplasmosis caused by Toxoplasma gondii.
Motility of parasites between host cells, within
which replication occurs, is powered by actino-
myosinmotors connectingwith extracellular sub-

strate through transmembrane adhesion proteins
secreted through organelles known asmicronemes
(1). A pivotal event in triggering motility is the
release of Ca2+ from compartments within the par-
asite,which activatesmyosin and triggersmicroneme
secretion (2). Recently, calcium-dependent pro-
tein kinases required for egress were identi-

fied in Plasmodium falciparum (PfCDPK5) and
Toxoplasma (TgCDPK1) (3, 4).

To investigate this critical process, we used
temperature-sensitivemutants in the lytic cycle of
Toxoplasma by means of chemical mutagenesis
(5). Upon phenotype induction, mutant F-P2 dis-
played a reduced invasion competency (Fig. 1A)
and complete inability to egress (6), but intracel-
lular growth progressed normally (6). Three dis-
tinct Ca2+-dependent events are required for egress
and invasion: extrusion of the apical conoid, mo-
tility, and microneme secretion. Conoid extrusion
in F-P2 was indistinguishable fromwild-type par-
asites (Fig. 1B and figs. S1 andS5C) (7–9).Motility
was assessed via video microscopy, and the in-
cidence of the three motility modes of Toxoplasma
tachyzoites (circular and helical gliding and twirl-
ing) (movies S1 to S3) were scored (9, 10). Under
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oratory Science, University of Oxford, John Radcliffe Hospital,
Oxford OX3 9DU, UK.
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mduraisi@hsph.harvard.edu (M.T.D.); marth@bc.edu (G.T.M);
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Fig. 1. Mutant F-P2 has a microneme secretion de-
fect. (A) Red-green invasion assays were performed
on the 2F-1-YFP2 wild-type and F-P2 mutant par-
asite lines. Parasites were phenotypically induced
for 24 hours at the restrictive temperature (40°C).
Averages of four independent experiments +SD
are shown. (B) Conoid extrusion of Ca2+-ionophore
(A23187)–induced or vehicle control–treated para-
sites was determined for parasites grown at 35° or
40°C. Averages of three independent experiments
+SD are shown. (C) Incidence of various motility
modes determined by video microscopy over 1 min
for wild-type (parent 2F-1-YFP2) and F-P2 para-
sites at conditions as indicated. Averages of four
independent experiments +SEM are shown. (D) Micro-
neme secretion of F-P2 parasites measured by means
of Western blot detection of Mic2 protein released
in the supernatant upon various stimuli and ve-
hicle control (dimethyl sulfoxide). “const.” represents
uninduced, constitutive secretion over a 60-min
period. Gra1 serves as loading control. (E) Immu-
nofluorescence assay of Mic2 and IMC3 (marking
the peripheral cytoskeleton) of wild-type and F-P2
at 40°C with or without ionophore stimulation
shows micronemes are intact in F-P2. Phase im-
ages show vacuolar membrane is intact in F-P2 at
40°C. Asterisks mark the egressing parasite.
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