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Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial
communities. The current emphasis on restoring habitat structure—without explicitly considering food webs—has been less successful
than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on ecologically effective
restoration. We identify three priority food web-related issues that potentially impede successful river restoration: uncertainty about
habitat carrying capacity, proliferation of chemicals and contaminants, and emergence of hybrid food webs containing a mixture of native
and invasive species. Additionally, there is the need to place these food web considerations in a broad temporal and spatial framework by
understanding the consequences of altered nutrient, organic matter (energy), water, and thermal sources and flows, reconnecting critical
habitats and their food webs, and restoring for changing environments. As an illustration, we discuss how the Columbia River Basin, site
of one of the largest aquatic/riparian restoration programs in the United States, would benefit from implementing a food web
perspective. A food web perspective for the Columbia River would complement ongoing approaches and enhance the ability to meet the
vision and legal obligations of the US Endangered Species Act, the Northwest Power Act (Fish and Wildlife Program), and federal treaties
with Northwest Indian Tribes while meeting fundamental needs for improved river management.

R
ecent years have seen substantial
expenditures and sustained ef-
forts by government agencies,
indigenous people, and non-

governmental organizations to restore
rivers and their declining fish stocks. These
activities are under increased scrutiny to
show that goals and objectives are being
met (1, 2). In general, past river restora-
tion has focused on recreating structural
attributes (e.g., channel width, complexity)
based on the assumption that associated
ecological functions will follow (3–6).
However, contemporary evidence suggests
that ecosystem structure alone does not
necessarily reflect how it functions in
supporting life. For example, field experi-
ments in the US Pacific Northwest have
shown that trophic manipulations (e.g.,
nutrient additions or salmon carcass in-
troductions) that boost the abundance of
potential prey organisms also boost sub-
sequent fish growth (7–10). In contrast,
restoration of physical habitats by creating
pools or adding structures yields ambigu-
ous evidence that such efforts increase
subsequent fish abundance and biomass
(11–17). Although it may be premature to
conclude from these studies that food
availability and species interactions are

more limiting to fish than the quality or
quantity of the physical habitat, evidence
is mounting that many habitat restoration
activities are not always as effective in
meeting stated goals and objectives as
originally anticipated.
Nationwide, river restoration practices

tend to target the effects of dams, flow
manipulation, and channel structure. More
than $1 billion/y has been spent since 1990
on river restoration in the United States,
with limited evidence of success (1). It has
been argued that successful restoration
should focus on restoring processes that
support ecosystem services and monitoring
how processes respond within an adaptive
management framework (3, 18, 19). We
suggest here that a balance between
physical habitat restoration and an un-
derstanding of trophic processes support-
ing biotic communities would improve
restoration effectiveness.

The Food Web as a Component of
Restoration
Food web structures and the processes that
drive them determine how system com-
ponents act collectively—and often syner-
gistically—to underpin the resilience
and productivity of the larger ecosystem

(SI Text, section 1). Each food web
component, whether a primary producer,
an external input of organic matter, a
microbial decomposer, or a secondary
consumer, responds to changes in envi-
ronmental conditions. Furthermore,
when a predator impacts its prey, the
influence can reverberate through the
entire food web as a “cascading trophic
interaction” (20, 21). Connectivity
across the entire river network also
allows organisms, such as fish, to link
subfoodwebs, thereby imparting an
adaptive structure and stability to food
webs (22, 23).
Despite their complexity and limited

general application, food webs have been
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used in successful restoration efforts (7,
24, 25) and manipulated at large scales
to improve water conditions and recrea-
tional fisheries (20, 26, 27). At the same
time, ill-advised manipulations have re-
sulted in serious environmental problems
[the introduction of opossum shrimp (Mysis
diluviana) into freshwater lakes being
a particularly pernicious example (28)].
Food webs are often considered to depend
on habitat, but habitat alone does not
determine the food web; many other fac-
tors shape its internal organization, link-
ages, productivity, and resilience. Species
diversity, mix of native and nonnative
species, chemical contaminants, phenolo-
gies and seasonal production cycles, car-
rying capacity, disturbance, nutrient
delivery and cycling, competition, pre-
dation, disease, and other processes all
shape food webs (29). Management ac-
tions affecting any one of these compo-
nents often cascade through food webs
to influence community and ecosystem
characteristics.
A food web perspective can reveal

insights into basic properties underpinning
productivity and resilience that cannot be
obtained from an exclusive focus on
hydrosystem, habitat, hatcheries, and har-
vest (referred to as the four Hs)—the
cornerstones of the Columbia River and
many other river restoration programs.
Restoration activities traditionally focus
on flows and physical habitat, and assume
that local habitat structure, quality, and
amount dictate fish production (3, 4, 5, 18,
19). Traditional freshwater food web il-
lustrations have typically conveyed the
notion that most fish food is produced
within the local aquatic habitat. In reality,
much food comes from external or very
distant sources—including subsidies from
marine systems borne by returning anad-
romous fishes, headwater tributaries that
transport prey downstream, adjacent ri-
parian and floodplain habitats (30, 31),
and disturbance that can influence the flux
of nutrients and other materials (32, 33)
(SI Text, section 2).

Setting
Weuse the Columbia River to illustrate the
importance of food webs in restoration.
Examining the Columbia River restoration
program, in light of river restoration in
general, provides insights into factors un-
derpinning successful activities (e.g., im-
proved survival at dams for juvenile
salmonids) (34) as well as less successful
efforts (35). The Northwest Power and
Conservation Council (NPCC) Fish and
Wildlife Program for the Columbia River
seeks to establish and maintain an eco-
system that sustains an abundant, pro-
ductive, and diverse community of fish and
wildlife (36). From 2009 to 2011, the In-
dependent Scientific Advisory Board,

a committee of scientists reporting to the
NPCC, National Oceanic and Atmo-
spheric Administration, and the Columbia
Basin Tribes, conducted an extensive re-
view of information on riverine food webs
in light of ongoing restoration activities,
and made recommendations to refocus
some research and restoration actions.
The process involved evaluating over 1,000
peer-reviewed published and unpublished
reports, conducting public briefings, and
receiving correspondence from >40 gov-
ernment agencies, tribal biologists, uni-
versity researchers, and private sector
scientists (29). The Columbia River serves
as the illustrative example for which we
synthesize our conclusions and recom-
mendations, but the problems and poten-
tial solutions are applicable to river
restoration in general. Recognizing that
restoration goals often represent political,
cultural, and societal choices, not just sci-
entific decisions, the US Endangered
Species Act mandates the ecological res-
toration of federally listed fish. The
NPCC Fish and Wildlife Program plays
a central role in the restoration effort
(SI Text, section 3).
Today’s Columbia River ecosystem, in-

cluding the estuary and uplands, repre-
sents a vestige of the historical ecosystem
(37). Dam construction, water storage and
withdrawals for irrigation, flood control,
changing land uses and climate (38, 39),
and introduction and expansion of nu-
merous nonnative species (40) have re-
sulted in significant landscape-scale
modifications of the river and its tributar-
ies. In particular, the relatively recent and
widespread construction of water im-
poundments throughout the Basin (Fig.
1A) has attenuated peak springtime river
flows, which historically aided migrations
of juvenile salmon and transported large
quantities of sediments, nutrients, cold
water, and associated materials down-
stream. Collectively, these alterations have
fundamentally altered food web structures
and processes in tributaries, the mainstem
river, the estuary, and coastal marine en-
vironments. The net result is that many
populations of once abundant salmon and
other fishes have sharply declined and are
now listed as endangered or threatened
under federal laws, resulting in legal obli-
gations to protect critical habitat [Endan-
gered Species Act 16 USC §§ 1531–1544;
ESA §3 (6) defines critical habitat for
a threatened or endangered species] (SI
Text, section 4).
Current Columbia River restoration

activities are diverse, but a high priority is
placed on habitat restoration, and its
dominance is reflected in the Program’s
expenditures. [The Program states (p. 7):

This is a habitat-based Program. The Program
aims to rebuild healthy, naturally producing

fish and wildlife populations by protecting,
mitigating, and restoring habitats and the
biological systems within them. Artificial
production and other non-natural inter-
ventions should be consistent with this ef-
fort and avoid adverse impacts to native fish
and wildlife species.

Much of the species- and habitat-centric
focus can be attributed to the Endangered
Species Act and federal treaty obligations
with numerous Northwest Indian Tribes.
They are an important part of the political
landscape and likely to remain so.] About
40% of the ∼$311 million spent annually
goes to acquiring, restoring, and monitor-
ing habitat, removing passage barriers,
providing diversion screens for migrating
fish, assisting with riparian habitat pro-
tection, improving water quality (temper-
ature and sediments), and conducting
transactions and conservation activities to
maintain ecologically desirable instream
flows and other actions aimed at reestab-
lishing more natural habitat processes
(41). A relatively small portion of the
budget is focused on removing, relocating,
or controlling native and nonnative
predators, a key element of food webs that
is likely to affect interactions within
communities.
Although these efforts are viewed as

beneficial, none explicitly addresses pro-
tection or restoration of food webs. Food
webs are integral to the four Hs, because
they provide the fuel and direct the flow of
energy and material for both productivity
and resilience over the long term. In the
past, a traditional threat analysis approach
has been used to relate habitat, hatcheries,
harvest, and hydropower operations to
salmon (42, 43). Within that context, size-
dependent survival, density-dependent
growth, and dependence of growth on the
interplay between temperature and food
availability as well as other important life
history parameters could be viewed as
consequences of trophic processes. Habi-
tat and food web approaches are compat-
ible, and if better integrated, they could
improve restoration effectiveness and
possibly avoid unanticipated con-
sequences of management actions for
target species, such as habitat actions
that inadvertently facilitate invasion by
nonnative predators or competitors and
cause unanticipated, often destructive
and unwanted, changes in food webs
(28, 44, 45). Despite the long history of
research on the Columbia River and
many thousands of restoration actions,
there is still little information on how
food webs (Fig. 2) and their processes
underpin restoration (SI Text, section 5).

Priority Issues for Riverine Ecosystems
In our review, three critical issues—carry-
ing capacity, chemical contaminants, and
hybrid food webs—were consistently
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identified as having high priority for re-
search, management, and river restoration
programs. River restoration programs
could be greatly improved by in-
corporating food web considerations
into the four Hs to better understand
and address these three critical issues.
Incorporating food web considerations
into project implementation could be es-
pecially important in determining whether
sufficient foods and suitable thermal
conditions are available to support ade-
quate growth and bioenergetics in juvenile
salmonids, whether pesticides and other
chemicals are impacting food supplies as
well as reducing the ability of organisms
to adequately function (e.g., altered be-
haviors, slower growth, increased disease
susceptibility), and whether nonnative
species or hatchery fish are competing for

prey with native fishes. These three
issues are rarely addressed, and they rep-
resent potentially huge problems for the
recovery of federally listed species that
could easily derail the success of many
habitat, harvest, and hatchery programs.

Uncertainty About the Carrying Capacity of
Rivers. There is little understanding of the
carrying capacity of altered or natural
habitats for aquatic organisms (46). We
define carrying capacity as the maximum
abundance or biomass of species of con-
cern that can achieve adequate somatic
growth needed to support population
growth given the accessible quantity and
quality of food available through time.
Managers and biologists in the Columbia
Basin have rarely considered this limita-
tion, although it may seriously constrain

the success of their programs (e.g., survival
of large numbers of stocked fish).
It simply is not clear whether the

Columbia River, or any other river, can
provide sufficient food to support large
populations of artificially raised fishes and
other organisms for the long term. Con-
sider the massive annual releases of juve-
nile fish from Columbia River hatcheries
and how they potentially affect food
webs and stocks of wild fish (Fig. 1B).
There are ∼130–150 million hatchery
salmon and steelhead added to the river
annually from >200 hatcheries at a cost
of >$50 million (29, 41, 47). The food used
to raise them (most originating from out-
side the Basin) as well as the thousands
of metric tons of natural foods required to
sustain them in the river certainly affect
the capacity of the Columbia River to

Fig. 1. In addition to the construction of major dams, the Columbia River Basin has undergone substantial transformations in many other ways. Examples
include (A) blocking of anadromous fish passage over large areas (StreamNet), (B) substantial releases (annual average of 2006–2012) of hatchery-raised fish
(Fish Passage Center, Portland, OR), (C) widespread application of pesticides (246 compounds evaluated; average of 1999–2004) and construction of waste-
water treatment plants, and (D) establishment of numerous nonnative aquatic species (note that the number and distribution of nonnative riparian species are
not known). White areas, outside Columbia River Basin.
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support naturally produced native fishes.
Evidence suggests that nearly two times as
many salmon smolts (mostly hatchery fish)
are produced in the Columbia Basin today
as were present during the period before
major hatchery and mainstem dam con-
struction (29). Furthermore, nonnative
American shad (Alosa sapidissima) (Fig. 3)
have greatly increased since the mainstem
dams were built, and they are potentially
competing subyearling Chinook (Onco-
rhynchus tshawytscha) smolts (29, 40).
Bioenergetic modeling suggests that the
greatest potential spatial and dietary
overlap of shad with age 0 Chinook is in
July, when both species feed primarily on
Daphnia. Depending on the consumption
demand between warm and cool years, an
estimated 14–16 mt Daphnia are con-
sumed for every 1 million subyearling
Chinook compared with 2.4–4.0 mt of
Daphnia consumed for every 1 million
larval–juvenile shad present during July in
John Day reservoir, one of the primary
spawning sites of adult shad. Although
accurate estimates are not available for
the abundance of larval–juvenile shad,
there are orders of magnitude more shad
than subyearling Chinook feeding in the
reservoir. Consequently, the total con-
sumption demand for Daphnia by the shad

population exceeds the consumption by
Chinook by a considerable but currently
unknown amount during the final month
of premigration growth. There are also
another 85 nonnative fish species and
a poorly inventoried suite of nonnative
plants and invertebrates in the Columbia
River (48, 49) that impact the food
supply in unknown ways. The lack of rou-
tine monitoring of key food organisms
like Daphnia precludes the ability to
compare temporal food supply with con-
sumption demand by the major consum-
ers. Consequently, understanding of the
carrying capacity of specific habitats and
how the carrying capacity for salmonids
might change in response to variability in
climate, hatchery practices, or populations
of consumers or prey is still quite limited.
We believe that there is a fundamental

need to consider sustainable food web
structures and carrying capacity for broad
habitat types in catchments (e.g.,
tributaries, mainstem rivers, lakes, reser-
voirs, estuary, and wetlands). For each
habitat type, including healthy and de-
graded examples, a blueprint for what to
protect and what to restore for maintaining
carrying capacity is paramount. Establish-
ing reasonable and measurable carrying
capacity targets for key species allows one

to gauge ongoing success in preservation
and reclamation efforts. In addition to
abundance estimates or counts already
recorded at dams, migrant traps, and
hatchery releases, other measurable met-
rics might include relationships among
thermal regimes, size (length and weight)
or condition of smolts and other juvenile
stages to stage-specific survival rates or
adult returns, and temporal trends in diets
or stable isotope values as a reflection of
food sources.
Some of this information is already being

collected, but general access to data
remains problematic. There are ongoing
efforts to improve data availability and
sharing through emerging monitoring
programs (e.g., Fish Passage Center:
www.fpc.org; Data Access in Real Time:
www.cbr.washington.edu/dart; Pacific
Northwest Aquatic Monitoring Partner-
ship; www.pnamp.org), but ongoing
effort is needed to collect and report
food web-relevant information. For
example, access to these data is essential
for determining the relationship between
carrying capacity and performance and
resilience of specific stocks and mon-
itoring the food demands of wild and
artificially propagated native and non-
native fishes.

Fig. 2. Food web structure in the Hanford Reach of the Columbia River (considered a relatively well-known site). The weak food web resolution illustrates the
lack of fundamental knowledge. Note the prevalence of nonnative species. The depicted food web is only a rudimentary subset of the actual web, despite
being a well-studied site; there is little empirical understanding of the diversity of food web elements and critical linkages. The basal nodes of the food web—
terrestrial plants, periphyton, detrital-associated organisms, aquatic insects, and zooplankton—are aggregates of a huge diversity of organisms; in con-
trast, the higher nodes are usually composed of single species. Red, primary producers; orange, primary consumers; yellow, secondary consumers; green,
tertiary consumers (created in Network3D; RJ Williams, 2010, Network3D Software; Microsoft). *Taxonomic groups containing some nonnative species.
**Nonnative species.

4 of 7 | www.pnas.org/cgi/doi/10.1073/pnas.1213408109 Naiman et al.

http://www.fpc.org
http://www.cbr.washington.edu/dart
http://www.pnamp.org


An Example: Bioenergetic Simulation of Food
Demand and Feeding Rate by Spring–Summer
Chinook Smolts.Growth and feeding rates of
spring–summer Chinook salmon during
peak migration of smolts illustrate their
food demands and the potential effects on
both wild and hatchery-reared fish. Using
bioenergetic modeling, we estimated the
food demands of wild and hatchery-reared
Chinook that were passive integrated tran-
sponder (PIT)-tagged at Lower Granite
Dam and recovered 461 km downstream at
Bonneville Dam from April to July of 2008.

The bioenergetics modeling simulations are
based on empirical inputs for the average
initial and final weights measured over the
simulation period, estimated diet composi-
tion, thermal experience, and energy density
of major prey in the diet.
The simulations indicated that, to grow

from the observed 15.0 g at Lower Granite
Dam onMay 5 to 18.2 g at Bonneville Dam
on May 19, yearling Chinook needed to
feed at 78% of their theoretical physio-
logical maximum consumption rate given
the diet composition and thermal regime
experienced during migration. Over that
period, individuals consumed an estimated
23.1 g food, with a growth efficiency
(grams of growth per grams of food con-
sumed × 100) of 14%. Assuming 64%
survival between Lower Granite and
Bonneville dams (e.g., 80% survival from
Lower Granite to McNary and 80% sur-
vival from McNary to Bonneville; ap-
proximated from figure 25 and table 35 in
ref. 50), for every million yearling Chinook
passing Lower Granite Dam, 18.5 mt of
prey would have been consumed over the
13-d migration. This consumption demand
was composed of 3.7 mt dipterans, 5.8 mt
other insects, 4.3 mt Daphnia, and 4.7 mt
amphipods (many nonnative). Given the
population abundance index of 9 million
hatchery and wild yearling Chinook at
Lower Granite Dam during 2008 (ref. 50,
tables 16–18), the total consumption de-
mand by yearling Chinook passing Lower
Granite Dam would have been 166.5 mt
prey consumed over the 13–14 d migra-
tion, comprising 33.3 mt dipterans, 52.1 mt
other insects, 38.8 mt Daphnia, and 42.2
mt amphipods (SI Text, section 6).

Proliferation of Chemicals and Contaminants.
Although there is widespread and abun-
dant use of synthetic chemicals in nearly all
river basins (SI Text, section 7), data on use
of artificial chemicals in the Columbia
Basin provide ample cause for concern.
The most recent tally of pesticide use
(average for 1999–2004) lists 182 chem-
icals, with an aggregate application rate of
∼46,000 mt active ingredients annually;
these chemicals are concentrated mostly in
agricultural lands along water courses
(Fig. 1C). In addition, there are a variety
of manufactured and natural organic
compounds, such as pharmaceuticals,
steroids, surfactants, flame retardants,
fragrances, and plasticizers detected,
especially in waters in the vicinity of
municipal wastewater discharges and live-
stock agricultural facilities (51, 52).
There is an urgent need to quantify and

map the spatial patterns of these chemicals,
assess their transfer and accumulation
rates, and document the vulnerabilities of
food webs to them. Additional inves-
tigations on the ecotoxic potential of their
mixtures on food webs are also required

(51, 52). Bioaccumulation and bio-
magnification of chemical contaminants
affect species that are critical components
of the food web (e.g., microbes, sensitive
invertebrates, and top consumers), herbi-
cides can cause direct loss of food sources
such as aquatic plants and algae (leading
to food shortages for higher trophic lev-
els), and exotic chemicals can reduce the
ability of species and individuals to cope
with normal predation risk and environ-
mental stresses (because of altered be-
haviors, slower somatic growth, and
increased disease susceptibility) (29). If
the basal layers of food webs are being
depleted by the rapidly expanding pres-
ence of contaminants (53, 54), it could
negate many ongoing restoration efforts.
Furthermore, fish migrating from the
oceans to freshwater transport persistent
industrial pollutants acquired at sea. The
net balance between positive feedback
of marine-derived nutrient additions
from spawning adults (55) and negative
feedback from pollutant delivery from
the ocean is unclear and needs careful
documentation (56).

Recognizing Hybrid Food Webs and Maintaining
Productivity. The continuing introduction
and proliferation of nonnative species and
their still poorly understood impacts on the
native biota heighten the need to manage
what have been termed novel, hybrid, or no-
analogue food webs (the terms novel, hybrid,
and no-analogue are used synonymously
here) for which we have no historical pre-
cedent (57). Rather than focus on restoring
pristine food webs, it would be prudent to
identify and maintain the most productive
and resilient food webs (i.e., those food
webs with the capacity to buffer and recover
from mild perturbations). Food webs con-
taining both new and old biotic elements
can collectively retain function, productivity,
and resilience (58). Attempts to return to
pristine food webs often involve use of
herbicides, pesticides, or other control
measures that can have unintended effects.
Contemporary rivers often contain a diverse
assemblage of fishes and other species,
and resilience does not imply that each
species should be abundant at all times.
The biological portfolio is dynamic, with
species waxing and waning according to
environmental conditions.
About 1,000 nonnative species of

plants and animals, of which 326 are
documented aquatic species (Fig. 1D), in-
habit the Columbia Basin. Many others
are expected to invade and be transported
to the Basin (48, 49). Agencies have dra-
matically increased prevention measures
against invasions by zebra and quagga
mussels (Dreissena polymorpha and D.
bugensis) into the Basin through border
inspection, cleaning stations, and required
invasive species tags for boats. Such

Fig. 3. Hundreds of nonnative aquatic species are
now established in the Columbia River Basin, and
many have changed food webs in unanticipated
and unwanted ways by shifting predation pres-
sure or fundamentally altering fluxes of energy
and nutrients. (A) M. diluviana and (B) American
shad (A. sapidissima) are abundant and important
competitors with planktivorous salmonids and
potentially serve as a nonnative energy source,
thus expanding predator populations and in-
creasing predation mortality on resident and
anadromous salmonids. Furthermore, altered envi-
ronmental conditions are allowing the expansion
of many native predators, including (C) Caspian
terns (H. caspia), thereby directly altering food
webs and increasing predation on native salmonids
(48, 49). Photos courtesy of (A) www.flickr.com/
photos/wontolla_jcb/2475661498/, (B) D. Hasselman,
and (C) Bird Research Northwest.
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programs could be expanded to other
aquatic invertebrates, vertebrates, and mac-
rophytes to complement intervention with
existing problematic nonnative species. The
stark reality is that hybrid food webs will
persist; nonnative species are widely estab-
lished, and eradication will be difficult, if not
impossible. The challenges are exemplified
by introductions of opossum shrimp, lake
trout and brook trout (Salvelinus namaycush
and S. fontinalis), and various other non-
native fishes into the upper Columbia (28),
which have fundamentally altered aquatic
communities and jeopardized recovery
of bull trout (S. confluentus) and other
native species (Fig. 3).
A Basin-wide monitoring program is

needed to address the temporal pace and
spatial extent of continuing nonnative in-
troduction, invasion, and establishments
and identify impending problems while
they are still manageable. As a start, it
would be prudent to reevaluate ongoing
stocking practices for nonnative species
that are inconsistent with the conservation
of native biota and their food webs. Iden-
tifying which nonnative species may sup-
port or disrupt important functions and
processes is essential for successful resto-
ration of federally listed species and im-
portant ecological services. Improved
public education is also needed to help
prevent future introductions of nonnative
species through aquarium releases, ballast
water discharges, live seafood, boat trail-
ers, and ornamental plants.

Other Important Food Web Concerns. Biotic
conservation is most successful where
actions are aimed at protecting ecosystems
rather than restoring or reclaiming them
after the damage is done. For the Columbia
and other rivers, the need for a concerted
effort to protect the food webs of critical
environments is increasingly recognized. A
robust strategy would preserve food web
diversity, which includes access by species
to a mosaic of connected habitats (for re-
production, growth, refuge, and migration)
with different productivities and mixtures
of native and nonnative species, even while
steering degraded systems to more pro-
ductive status. A broad range of additional
food web issues needs to be addressed and
will allow the more complete under-
standing necessary for effective manage-

ment. These issues include understanding
the consequences of altered nutrient, or-
ganic matter (energy), water, and thermal
sources and flows, reconnecting critical
habitats and their food webs, and restoring
for changing environments (SI Text,
section 8).

Incorporating a Food Web Perspective
into Management
Incorporating food web considerations into
management helps test restoration
assumptions and leads to discovery of
species interactions that influence man-
agement success. Although the construction
and modeling of complete food webs may
be difficult, there are approaches that
can yield useful results relatively quickly.
Specifically, we suggest a tractable frame-
work that focuses on key processes and
interactions that affect growth and survival
of salmonids. First steps could include (i)
use of focal species to quantify inter-
actions with prey, competitors, predators,
pathogens, and parasites and environ-
mental conditions; (ii) use of stable iso-
topes and diet analysis to quantify food-
related interactions, especially with pred-
ators, invasive species, or hatchery-reared
salmonids; (iii) use of bioenergetic models
to estimate demands on food supplies by
intra- and interspecific competitors and
diagnose the interplay between tempera-
ture, food availability, and quality within
the growth environment of key species;
(iv) consideration of density dependence in
growth and survival associated with artifi-
cially elevated abundance through hatch-
ery stocking; and (v) understanding the
effects of chemicals and toxins on specific
food web structures and processes. These
and other targeted approaches can identify
interactions or environmental conditions
that impact restoration goals, allowing
managers to focus on critical processes at
relevant locations and times.
Furthermore, food web modeling,

like habitat modeling, has an important
place—if for no other reason than the
development of testable hypotheses that
can be confirmed or refuted. In the Co-
lumbia, linked trophic and population
models have been essential in un-
derstanding the scope of predation by
northern pikeminnow (Ptychocheilus ore-
gonensis) and nonnative predators in the

mainstem river reservoirs (59–62), impacts
of predation by gulls (Larus spp.) and
Caspian terns (Hydroprogne caspia) on mi-
grating juvenile salmon (63–66), impacts of
nonnative mysids and lake trout on kokanee
and native salmonids in lakes (28, 67),
complex species interactions (68), and
stage-specific growth and survival of some
juvenile salmon populations during fresh-
water and early marine rearing (69, 70).
General statistical and population models
have been used to explore density de-
pendence and carrying capacities in lake-
and stream-rearing populations (71–74).
More broadly, trophic modeling has greatly
improved the understanding of lake con-
ditions in North America (20, 26). A com-
prehensive food web model should be
general enough that the inputs can be
changed to accommodate variability in
thermal regime, feeding, diet, and growth at
appropriate temporal and spatial scales to
both forecast what would happen and up-
date inputs when experience suggests key
components are missing.
Specifically for the Columbia, whether

restoration actions are effective cannot be
known for many years. However, NPCC,
state and federal agencies, and Columbia
River tribes are actively involved in dis-
cussions about implementation of food web
considerations—and the availability and
sharing of data—within the existing Fish
and Wildlife Program. Most importantly,
this discussion has raised awareness of the
key roles of food webs in restoration.
The needs to consider carrying capacity,
chemical impacts, hybrid communities,
future conditions, and data transparency
are paramount when prioritizing expensive
restoration activities. Implementing a food
web perspective for the Columbia River
complements the four Hs and thereby,
enhances the ability to meet the vision and
legal obligations of the US Endangered
Species Act and the need for improved
river management.
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