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Our ability to predict consequences of climate
change is severely impaired by the lack of knowl-
edge on the ability of species to adapt to changing
environmental conditions. We used distribution
data for 140 mammal species in Europe, together
with data on climate, land cover and topography,
to derive a statistical description of their realized
climate niche. We then compared climate niche
overlap of pairs of species, selected on the basis
of phylogenetic information. In contrast to
expectations, related species were not similar in
their climate niche. Rather, even species pairs
that had a common ancestor less than 1 Ma
already display very high climate niche distances.
We interpret our finding as a strong inter-
specific competitive constraint on the realized
niche, rather than a rapid evolution of the funda-
mental niche. If correct, our results imply a very
limited usefulness of climate niche models for the
prediction of future mammal distributions.
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1. INTRODUCTION
Adaptive radiation and allopatric speciation are the
key mechanisms in the creation of species diversity
(Schluter 2001; Gavrilets & Losos 2009). Rapid adap-
tation to new or altered environmental conditions has
been shown experimentally (e.g. Losos et al. 1998),
by analysis of palaeontological data (Thompson 1998)
and by comparisons of species across phylogenies
(Benton 2009; Evans et al. 2009). Up to now, specia-
tion has been commonly viewed as arising from
adaptation to different habitats (Gavrilets & Losos
2009) and isolation (Schluter 2009), but rarely to
climate (but see Evans et al. 2009). It could also
thus be argued that the current changing climate
may not have too severe consequences for species’
continued existence, because they are able to adapt
and evolve at a similar pace. A key question is whether
phylogenetic constraints such as potential genetic
and epigenetic mechanisms that restrict the evolution
of new varieties within taxa (cf. Losos 2008; Wiens
2008) may be too strong to allow adaptive shifts in
climate niches. Indeed, Kozak et al. (2006) show how
Electronic supplementary material is available at http://dx.doi.org/10.
1098/rsbl.2009.0688 or via http://rsbl.royalsocietypublishing.org.
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the conservation of climate niches can lead to
geographical displacement and hence peripatric
speciation.

Here, we investigate the degree to which terrestrial
mammals overlap in their multidimensional climate
niche. European mammals are particularly well
suited for such an analysis because of three features:
(i) a mammal supertree phylogeny has recently been
published (Bininda-Emonds et al. 2007); (ii) a reliable
database of mammal distributions within Europe
(Temple & Terry 2007) is available; and (iii) mammals
are species-rich enough to yield conclusive results.
Together with data on climate, land cover and
topography, these data allowed us to fit species dis-
tribution models to 140 native terrestrial European
mammals and calculate climate niche overlap. For
each species, we compared the climate niche distance
and the phylogenetic distance to its closest relative.
In accordance with the hypothesis of phylogenetic
signal (Losos 2008), we tested the hypothesis that clo-
sely related species also share very similar climate
niches. If this hypothesis is falsified this would indicate
a lack of phylogenetic niche conservatism as well
(Losos 2008).
2. MATERIAL AND METHODS
We combined three types of data in our analysis: distribution data
on all European mammals (taken from Temple & Terry 2007),
environmental information (climatic, topographic and land-cover
data) and phylogenetic information (from Bininda-Emonds et al.
2007). Spatial data were gridded to 50 � 50 km, yielding 3037
cells from 118 to 328 E, and from 348 to 728 N. Owing to collinear-
ity within the environmental data, we selected 13 final predictor
variables from an initial set of 24 (see electronic supplementary
material for a detailed description of variables and selection
methods), of which five were climate variables (growing degree
days over 58C, annual precipitation, summer precipitation,
temperature seasonality and residuals of absolute minimum
temperature).

Distribution data were analysed using Boosted Regression Trees
(BRT, following Elith et al. 2008). Across all species, climatic vari-
ables explained 56 per cent (1 s.d. ¼ 15.5%) of the variation in
species occurrences, confirming that the climatic niche played a
dominant role in explaining distributional patterns. Spatial autocor-
relation was present, but at a very short distance only, and could not
be improved by methods presented in Dormann et al. (2007); see the
electronic supplementary material. We then calculated overlap in
climate niches between sister species (which were identified by
cophenetic distances from the phylogenetic tree; Paradis et al.
2004). To do so, we computed predicted values from the BRTs to
a five-dimensional climate dataset, which varied the five climate vari-
ables in 20 equidistant steps, but kept all other predictors at their
median value. We then clipped the dataset to include only data
points inside the five-dimensional convex hull of the 3037
European cells (i.e. the realized climate space). Our climate-niche
dataset comprised 185 308 data points. Niche overlap (NO) was
calculated on the basis of this hyperdimensional climate space (not
as geographical overlap) as

NO ¼ 1

N

XN

k

minðŷik; ŷ jkÞ
maxðŷik; ŷ jkÞ

;

where ŷ:k is the predicted occurrence probability for the kth of N
climate hypercube combinations (normalized so that

P
ŷ:k ¼ 1,

thereby correcting for different prevalences and hence
mean expected occurrence probabilities) and species i or j. This
index scales predicted probabilities by the maximum of both species,
yielding values from 0 to 1. For niche distance, we use 1 2 NO.
Using different measures of niche overlap made no difference to
the outcome (see the electronic supplementary material). Finally,
we used a null model to examine, whether our results were artefacts
of species occupying different geographical locations and hence see-
mingly different climate niches. This was not the case (see the
electronic supplementary material).
This journal is q 2009 The Royal Society
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3. RESULTS
We found that closely related species differed widely
with respect to their climate niche (figure 1). For the
vast majority of comparisons, climate niche overlap
was much smaller than would be expected from their
phylogenetic relatedness (assuming constant mutation
rates), hence we detected no phylogenetic signal with
respect to climate niche distances of sister species.
Across all species, a very weak phylogenetic trend
was discernable, relating to 23 of the 140 species
(21 positive, two negative trends; see the electronic
supplementary material). This faint signal indicates
that phylogenetic constraints were largely unimportant
for the currently realized climate niche of European
mammals.

Within the lagomorpha, rodentia and insectivora,
niche distances between sister taxa were significantly
greater than in the chiroptera (figure 2). However,
scatter was also large within groups and precluded a
more in-depth analysis.
Figure 1. Climate niche distance and phylogenetic distance
for a comparison of 140 mammalian sister species. Diag-
onal line separates niche flexible (upper left) and niche
conservative (bottom right) pairs. High values for phyloge-

netic distance indicate species only very distantly related to
any other species (e.g. crested porcupine Hystrix cristata
and European beaver Castor fiber), and for niche distance,
very different realized climate niches.
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Figure 2. Violin plot of climate niche distances for the six

mammalian orders. Number of species within each group
is given below each bar. Groups sharing the same letter are
not significantly different in Tukey’s honest significant
difference post hoc test (i.e. p.0.05).
4. DISCUSSION
Our analysis indicates high flexibility of realized
climatic niches independent of phylogenetic distances.
One might conclude that owing to the rapid evolution
of climate niches in European mammals, climate
change poses a minor threat to these species. The
alternative explanation, and the more conservative
one, is that the fundamental niche of the mammals
investigated here is much wider than the realized
niche (Kearney 2006). Competition between
closely related species may have shifted the realized
climate niche without requiring major evolutionary
adaptations.

Apparently, climate niche space is similarly subject
to character displacement as other dimensions of
the niche hypervolume (size (Hutchinson 1959);
(Diamond 1975); size of prey (Hespenheide 1975);
forage quality (Olff et al. 2002); mutualistic gut
microbe community (Ley et al. 2008); soil nutrient
requirements (Tilman 1982)). Because our analysis
does not comprise extinct mammal species (because
both genetic and distributional data are known to a
far lesser extent), we are hesitant to invoke the
‘ghost of competition past’ (Connell 1980) for the
observed climate niche displacement. At the
same time, we found no obvious convincing
alternative explanation (e.g. shared pathogens,
hybridization vigour, genetic drift; see Schluter
2001 for review).

From species ranges analysis it is known that mam-
mals, as endothermic organisms, can occupy broader
fundamental climate niches than insects or plants
because they are able to buffer variation in climate
(see also Gaston 2003). It is thus well conceivable
that their fundamental climate niche is rather wide
and less subject to physiological constraints than that
of poikilothermic animals. Competition would thus
simply act on the realized, not on the fundamental,
climate niche. We speculate that a comparison with
other species groups such as reptiles or insects
should show a stronger phylogenetic signal.
Biol. Lett.
European mammals have been challenged by alter-
nating climatic conditions for several million years
(DeSantis et al. 2009). The current speed of climate
change is rapid, both in geological and evolutionary
terms (IPCC 2007). Depending on the interpretation
of our observed large difference between the
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phylogenetic and the climate niche signal, we may
regard climate change as problematic or not. If we
assume that climate niches have evolved to what we
observed, then this would indicate rapid evolution.
For plants (Sjöström & Gross 2006) as well as
marsupials (Johnson et al. 2002), a correlation
between extinction risk and phylogenetic similarity
has been shown, indicating that genetic variability
may not keep up with changing environments. But
even the observed high degree of climate niche
evolution is unlikely to suffice for European mammals
to evolve in situ to climate change. The most recent
speciation event documented within our dataset
occurred almost 400 000 years ago (between the two
bat species Rhinolophus euryale and R. mehelyi ), or
more than two ice ages before today. Such phyloge-
netic data, however, do not allow an investigation of
climate niche changes within species, where most
adaptation is likely to occur.

The alternative interpretation, namely that our
measurement of the climate niche represents the rea-
lized rather than the fundamental climate niche,
would lead to the opposite conclusion: realized climate
niches bear little resemblance to the underlying funda-
mental niche. In this interpretation we would state that
any projection of future climate change scenarios made
on the basis of current distribution data alone will be
misleading, because it is very likely that competition
determines the niche, not the species’ ability to inhabit
a parameter space where it is currently not observed
(see also Nogués-Bravo 2009).

Thus, while European mammals show hardly any
phylogenetic signal in their climate niches, this pre-
sents no guarantee for their survival under climate
change. Because mammal populations worldwide
(and those in Europe are no exception) are also
threatened by habitat loss, pollution and accidental
mortality (Schipper et al. 2008), climate change is
only one of several threats dormice and brown
bears are facing.

Many thanks to Michael Holyoak, Boris Schröder and an
anonymous reviewer for comments on a previous version.
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for funding (VN-NG-247).
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niches in European mammals” by 
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& D. Herrmann (Biol. Lett.) 

Data 
Data on the distribution of European terrestrial mammals 
were taken from the European Mammal Assessment 
(Temple & Terry 2007) and were gridded into the 50 x 50 
km European Environmental Agency reference grid 
(http://dataservice.eea.europa.eu/dataservice/metadetails.
asp?id=760). It consists of 3037 cells from 11° to 32° 
East, and from 34° to 72° North. Grid cells were 
classified as “present” when a cell fell at least to 50% of its 
terrestrial area into the distribution polygon (Table A1 
gives details on each species). 
 We selected 13 explanatory variables from an 
initial set of 24. In case of collinearity, one variable was 
selected on ecological grounds (for land cover), or a 
sequential regression (Graham 2003) was used to 
orthogonalise variables (for topography and climate). 
Specifically, we omitted landcover variables which we 
considered unimportant due of their rareness (bare 
ground, ice and snow, lakes, sea) and several derived 
measures of water availability (equilibrium and potential 
evapotranspiration, water deficit and water balance). We 
confirmed our selection by a quantification of variable 
importance using randomForest (Breiman 2001): The 
variables selected were always better than the correlated 
variables we omitted. Instead of altitude and slope we 
calculated their residuals with respect to all other variables 
retained (see below). This means, “residual altitude” and 
“residual slope” represent topographic effects in addition to 
all more direct effects correlated with topography (such as 
climate and landuse). Similarly, due to the high correlation 
of absolute minimum temperature with growing degree 
days (over 5°C), we calculated its residuals after linear 
regression against GDD5 and temperature seasonality.  

The following variables were finally used as 
input: five climatic variables (growing degree days over 
5°C, annual precipitation, summer precipitation, 
temperature seasonality, and residuals of absolute 
minimum temperature; data taken from WorldClim 
(Hijmans et al. 2005) or calculated from these following 
Levinsky et al. (2007)); two topographic variables 
(residuals of mean elevation, residuals of slope; based on 
NASA’s SRTM 30’’ data, available through 
http://seamless.usgs.gov); and six land-cover variables 
(proportion of crop, grassland, mosaic habitat, shrubland, 
urban and forest; data taken from Global Landcover 
Project URL: http://ies.jrc.ec.europa.eu/global-land-
cover-2000). All these variables were correlated with |r|< 
0.7. 

Phylogenetic data were extracted from the 
second of the three supertrees published in Bininda-

Emonds et al. (2007, 2008, see Fig. A6). The analyses of 
all trees were almost identical (data not shown). We 
calculated the cophenetic distance between all 140 
mammal species which were found both in the supertree 
and the European Mammal Assessment using the R-
package ape (Paradis et al. 2004). Branch lengths were 
divided by twice the tip-root-distance, yielding a 
phylogenetic distance ranging from 0 (identical species) to 
1 (maximum difference, approx. 96 million years). We 
identified for each species a sister species, i.e. the one with 
the shortest phylogenetic distance. For some few species 
we randomly choose one from the group of identically 
closely related species. This random decision had no 
discernable impact on our analysis. Some very few species 
were used twice as reference, due to the structure of the 
phylogeny (see Table A1 and the group Sorex 
granarius/araneus/coronatus in the phylogeny). 

Species Distribution Models 
Distribution data were analysed using boosted regression 
trees (BRT), following Elith et al. (2008). Recently, Elith & 
Graham (2009) have shown, through simulation, that 
BRT is superior to presence-only approaches such as 
MaxEnt (Phillips et al. 2006) (GLMs are too constrained 
by their smooth functional relationship, while GARP 
suffers from severe commission errors: Stockman et al. 
2006). 70% of the data were stratified-randomly selected 
for training the BRT, thus maintaining equal prevalences 
in training and hold-out sample. On the 30% hold-out, we 
assessed model quality using AUC, ratio of observed to 
predicted presences and number and distances of 
predicted occurrences outside the observed range (data 
not shown). The latter three give an indication of how 
closely the BRTs follow the geographical distribution, and 
if they predict occurrences far away from actual presences. 
We additionally quantified spatial autocorrelation in model 
residuals but did not specifically adjust the models because 
the range of spatial autocorrelation was extremely short 
and could not be improved by a spatial model (see below). 
All analyses were carried out using R (R Development 
Core Team 2009). 

Niche overlap 

How to calculate niche overlap: a brief 
positioning of our work in the current debate 
There is currently no standard way to calculate niche 
overlap. Two decisions of importance for our analysis are 
currently debated: Firstly, how to quantify overlap (i.e. 
which metrics to use); secondly, whether to base niche 
overlap on geographical overlap or on overlap in 
parameter space. 
 There are many indices to calculate the overlap 
of niches (Hurlbert 1978, Krebs 1989, Warren et al. 2008), 
and we use four different ones to check for robustness of 
our analyses: 1. a new one, defined in appendix I; 2. the 
Horn-Morisita-index; 3. the D-index of Schoener (1968); 
and, 4. the I-index (a variation of the Hellinger distance: 
Warren et al. 2008). All indices use the probability of 
occurrence of the two species i and j under environmental 
conditions k:  and . We calculated the ratio ikŷ jkŷ
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ˆ/ˆ  to control for prevalence differences before 

calculating niche overlap (the sum is across all data used 
for calculating niche overlap). 
 Fundamentally, values can be derived for each 
cell in space, and a comparison of species ranges could 
then serve as surrogate for niche overlap. While this 
approach was recommended by Warren et al. (2008), it 
suffers from a weighting in favour of common 
environments: Any two species co-occurring in the same 
and common habitat (say, a lowland agricultural grassland) 
will have a high overlap, even if one was able to also occur 
in the mountains. This is because the lowlands are far 
more common and thus have a greater influence on the 
niche overlap value. Warren et al. (2008) correct for this 
by using an environment-based null model.  

ikŷ

Alternatively, one could predict for a regular 
hypercube of climate variable combinations and calculate 
niche overlap in climate space (Graham et al. 2004, Knouft 
et al. 2006, Pfenninger et al. 2007). This automatically 
avoids the problem of commonness of environments. It 
has been criticised, however, as potentially causing a 
biased estimate of niche overlap, because in the hypercube 
certain climate variable value combinations would be 
used, which are not found in the study region (Warren et 
al. 2008). While this is true in principle, it is also strongly 
dependent on the model type of the species distribution 
analysis. Regression trees (such as our BRTs) extrapolate 
beyond the fitted range without trend, i.e. a value higher 
than observed will receive the same value as the highest 
observed (Elith et al. 2008, in contrast to more regression-
based approaches such as GLM, GAM, SVM or MARS). 
Thereby an effect of beyond-the-range predictions is 
eliminated. Note that the example given by Warren et al. 
to illustrate this potential problem is due to their method 
making extremely high predictions outside the fitted 
range. We consider this a weakness of their species 
distribution modelling approach, not of the niche overlap 
in climate space. We follow this latter approach in our 
analysis, but additionally restrict niche overlap calculations 
to those data points of the hypercube which are inside the 
5-dimensional convex hull of the original climate data. 
This reduces the number of points to predict to from 3.2 
million to 185 308. (This severe reduction of parameter 
space with dimension has also been termed the “curse of 
dimensionality” by Bellman 1957.) In a previous analysis, 
using all hypercube points, results are qualitatively similar, 
but niche overlap was lower (data not shown). Predicting 
to “non-analogous” did not, however, distort the analysis 
as claimed by Warren et al., indicating that it was indeed 
more to do with their modelling approach. 

ikŷ

Finally, depending on the methods used, niche 
overlap comparisons may be closer to investigating “niche 
equivalency” or closer to “niche similarity” (Warren et al. 
2008). Our approach (based on niche overlap in climate 
space) is much closer to “niche equivalency” than the 
cross-prediction tests of niche similarity (e.g. Peterson et 
al. 2002). 

Niche overlap calculations 

To calculate climate niche overlap, we predicted 
probability of occurrence of each species for a multi-
dimensional climate parameter space. To do so, we 
produced a data set with equidistant sequences of 20 
points along each of the five climate parameters, from the 
lowest to the highest observed value, i.e. a five-
dimensional hypercube with 205 (=3.2 million) different 
parameter combinations. We then clipped the data set to 
include only data points inside the 5-D convex hull of the 
3037 European cells (i.e. the realised climate space). Our 
climate-niche data set now comprised 185 308 data points. 
Values for non-climatic variables were set to their median 
value. Next, we used the predicted probabilities for the 
hypercube sample to compare sister species. The similarity 
in the climate parameter space is an unbiased estimator of 
climate niche overlap, while geographic overlap is 
confounded not only by land-use and topographic 
variables, but also by the frequency of climate variable 
combinations. In our hypercube sample, each climate 
combination occurs exactly once. 
 Climate niche overlap between sister species was 
calculated in four ways. One (henceforth termed niche 
overlap) calculates the proportion of the niche space 
occupied by both species of the total niche space occupied 
by any of the two species: 

∑=
N

k
jkikjkik yyyy

N
NO )ˆ,ˆmax(/)ˆ,ˆmin(1 , where is the 

predicted value for the kth of N climate hypercube 
combinations (normalised so that , thereby 

correcting for different prevalences and hence mean 
expected occurrence probabilities) and species i or j. This 
index scales predicted probabilities by the maximum of 
both species, yielding values from 0 to 1. For niche 
distance, we use 1–NO. Secondly, we used the Morisita-
Horn index, the I-index and the D-index, which yields a 
very similar picture (see next section for formulae and 
results). 

ky.ˆ

∑ =1ˆ.ky

To investigate whether climate niche overlap 
may occur as an artefact of the unique climate conditions 
of the geographical species ranges, we analysed the 
overlap of each species with the combined niche of both 
sister species. The results (below) indicate that this was 
not the case. 

Additional results and the null model 
approach 

Analysis using the Morisita-Horn-index, the I-
index and the D-index 
The Morisita-Horn index is defined as (Wolda 1981, 
Krebs 1989):  
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(definitions of symbols as in the formula for NO, 
appendix I). It allows the calculation of distances for any 
type of positive valued abundance information, thus also 
for probabilities (Oksanen et al. 2009).  

The D- and I-indices are defined as (Warren et al. 
2008): 

∑ =
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Fig. A1 shows that the results are near-identical for these 
indices. 

Spatial autocorrelation 
As with all spatial data, residual spatial autocorrelation 
(SAC) is a potentially relevant issue (Dormann 2007). It 
may arise from various sources, most noticeably from 
biological causes (dispersal limitation, source-sink 
dynamics, spill-over effects), from omission of relevant 

environmental drivers (e.g. prey abundance) or from 
model mis-specification. The modelling approach chosen 
here (Boosted Regression Trees), can only address the last 
problem. It offers high flexibility in the fitting of statistical 
relationships, particularly non-linear relationships 
(including thresholds) and interactions between 
explanatory variables. On the other hand, BRT cannot be 
combined readily with any of the methods correcting for 
spatial autocorrelation that are currently available 
(Dormann et al. 2007). One could thus “only hope” to 
have reduced residual spatial autocorrelation compared to 
more traditional GLM approaches. 
 To investigate of spatial autocorrelation, we build 
GLMs (including quadratic effects and interactions) from 
the most important variables in the BRT models. Next, 
we used the very flexible approach of Spatial Eigenvector 
Mapping (Griffith & Peres-Neto 2006, Dormann et al. 
2007) to reduce the residual spatial autocorrelation of this 
GLM. In Fig. A2 we illustrate the findings for two species, 
one rather common and widespread (the European fox 
Vulpes vulpes) and a local endemic species (Acomys minous). 
This figure shows that BRT has the shortest range of 
spatial autocorrelation (i.e. the distance when Moran’s I 
drops to approximately zero), and considerably less SAC 
than the GLM. The spatial correction of SEVM is able to 
reduce SAC at the very short distance (one to four grid 
cell), but is still inferior to BRTs in any of the longer 
distances. 

 

 

 
Fig. A1. Morisita-Horn-, I- and D-index depiction of fig. 1. 
While scaling (of the y-axis) and the position of the out-
species changes slightly, the overall picture is highly similar. 

Across all species, residual spatial autocorrelation 
is still prevalent (Fig. A3), with mean range of 4.6 grid 

 
Fig. A2. Corellograms depicting spatial autocorrelation (as 
Moran’s I) in model residuals for two species. 
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Fig. A4. Niche overlap between species and the hypothetical 
super-species resulting from the combination of the target 
and its sister species. Expected values for the Morisita-Horn 
(right box plot) is 0.5. 

 
Fig. A3. Density plot of range of spatial autocorrelation 
across all modelled species (in km). Rug at the bottom 
indicates data points. Vulpes vulpes and Acomys minous have a 
range of 2.3 and 1.3 km, respectively. 

cells (i.e. approximately 250 km). We tried, for some 
species, to find spatial eigenvectors correlated with BRT 
residuals and include those in the BRT to reduce its SAC. 
Neither for Vulpes vulpes nor for Acomys minous did this 
alter the SAC in residuals noticeably (data not shown). We 
are thus not aware of any way to reduce spatial 
autocorrelation while maintaining the high model fit of 
BRT. Overall, while BRT is not able to remove spatial 
autocorrelation (as neither does SEVM), we regard the 
huge reduction compared to the GLM as indication of 
appropriateness of our method in the face of spatial 
autocorrelation. 

Null models for niche overlap 
Our approach may be liable to type II errors, i.e. two 
species may be described as non-overlapping in their 
climate niche although they really are. Imagine, for 
example, the case of the European Brown Hare (Lepus 
europaeus) and its sister species the Corsian Brown Hare 
(Lepus corsicanus). If both species shared the same climate 
niche but just happened to be spatially separated, we 
might find a low niche overlap because Corsica has a very 
different climate variable correlation structure than the 
rest of Europe. To investigate the effects of spurious non-
overlap, we adopted the following procedure: 
 We combined the presence-points of two sister 
species, fitted a boosted regression tree to the combined 
data, calculated the multidimensional climate niche for the 
combined data and then calculated the overlap of each 
species with the combined climate niche. If the two 
species were completely and truly separated in climate 
space, then we would expect an average overlap of each 
species with the combined of 0.5 (measured by Morisita-
Horn), since each species contributes equally to the new 
pseudo-species’ niche. That is exactly what we found (Fig. 
A4).  

This finding generally confirms our assumption 
that non-overlapping species really occupy different 
climate space and that our results (in the main text) are 
not a mere artefact of environmental conditions differing 
between their ranges. 

 Fig. A5 presents the values for all 140 
comparisons. While on average their value is 0.5 (for 
Morisita-Horn), they scatter across the entire graph. This 
means that the effect of a rare species contributing to the 
combined niche (i.e. values closer to 0 on the x-axis) is 
unpredictable, i.e. it does not systematically affect our 
results. 
 The situation is slightly more complex for the 
niche overlap-index, which includes the absolute 
probabilities of occurrence values. (We could not derive 
an expected value for this index analytically.) Similar to 
the Morisita-Horn index, there is no systematic effect of 
rare or common species on the estimation of niche 
overlap (Fig. A4). 

Across all comparisons, Morisita-Horn-overlap 
of each species with the combined is 0.5 (Fig. A4). 
Although there are cases where the overlap is considerably 
higher (particularly when one species is far more abundant 
than the other and hence also dominates the combined 
climate niche), this gives us confidence that our findings 
are no statistical artefact. 

Phylogenetic trends in climate niche 
distance 
Our study focused on the question, whether climate niche 
overlap is maintained between sister species. One could, 
however, address a wider question on niche distances 
through phylogeny. This is more challenging, because we 
have no date for the extinct species, so that we are unable 
to trace the evolution of the climatic niche back through 
the phylogenetic tree. Still, we can analyse all possible 
extant species comparisons (140 x (140–1) / 2 = 9730) 
and investigate this pattern as a function of phylogenetic 
distance. This section presents the results of this 
comparison. 
 Fig. A6 shows the phylogenetic trend for climate 
niche distance for each species. Across all 140 species, 
linear lines dominate, and most are horizontal. More 
formally, we carried out a Spearman rank correlation for 
each of these panels, the results of which are depicted in 
Fig. A7. Of the 140 comparisons, 23 were significant (21 
positive and 2 negative). 
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Fig. A7. Distribution of correlation coefficients for the 140 
species in Fig. A6. Dashed grey lines indicate thresholds for 
significance (P < 0.05). 

  
Fig. A5. Null model analysis for Morisita-Horn overlap 
(upper) and niche overlap (lower). Niche overlap of each 
species with the combined data as a function of their 
contribution to the combined data set. In principle, one 
could expect a species that contributes 30% to the combined 
data also to overlap to 30% with the “combined niche”. 
These points would be on the 1:1 line. The majority of 
points falls below this line (for niche overlap) or at least no 
pattern suggests a dominance by the more prevalent of the 
two combined species (for Morisita-Horn overlap). A 
species contributing only 10 to 110 points will have lower 
expected overlap than the sister species contributing the 
remaining 100. Thus, the expected overlap is Ni/(Ni + Nj), 
where Ni is number of observations for species i. 

Fig. A8. All pairwise comparisons (140 x (140–1) / 2 = 
9730) of climate niche distance as a function of phylogenetic 
distance. Orange lines indicate per-species regressions 
(dotted and thin if not significant according to Spearman’s 
rank test). Blue lines are regression (+/- 95% CI) through all 
points (climate niche distance = 0.698 + 0.025*phylogenetic 
distance, F1, 9728 = 8.4, P < 0.01, R2adj = 0.00076), and black 
horizontal line is the grand mean of climate niche distance 
(0.719). 

 To get an estimate of the overall importance of 
phylogeny, we calculated the overall trend across the 9730 
comparisons (realising that doing so we violated the 
assumption of independence of data points). This 
regression indicates a significant trend of climate niche 
distance with phylogenetic distance (Fig. A8). 
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Fig. A6. Climate niche distance for each species against phylogenetic distance (both axes scaling from 0 to 1). Coloured lines are lowess- smoothers to guide the eye. Numbers refer to species code (Table 
A4). 

 6 



 

Phylogenetic tree underlying this study 

 
Fig. A9. Phylogeny of European mammals in this study. 
 

 

 7



Table A1. Species under investigation in this study, their prevalence, sister species, niche overlap (NO, H, D and I index), 
cophenetic distance and node age. Note that while we give niche overlap values here, the figures in the main paper give niche 
distances (i.e. 1 – niche overlap). Last column gives significance levels and direction of phylogenetic trend (Spearman rank 
correlation, see fig. A6; empty cell indicate n.s.). 

nr name group N sister cophenetic nodeage NO Horn D-index I-index trend 

1 Acomys minous Rodentia 11 5 0.96 92 0.54 0.84 0.72 0.8
2 Alces alces Artiodactyla 868 18 0.7 67 0.1 0.27 0.22 0.52
3 Allactaga major Rodentia 29 111 0.96 92 0.24 0.02 0.14 0.44
4 Alopex lagopus Carnivora 68 140 0.96 92 0.06 0.04 0.08 0.43
5 Apodemus agrarius Rodentia 952 6 0.7 67 0.18 0.26 0.31 0.56
6 Apodemus alpicola Rodentia 45 7 0.27 26 0.35 0.4 0.47 0.68
7 Apodemus flavicollis Rodentia 1893 6 0.27 26 0.35 0.4 0.47 0.68
8 Apodemus mystacinus Rodentia 117 5 0.7 67 0.18 0.26 0.31 0.56
9 Apodemus sylvaticus Rodentia 2182 6 0.04 3 0.17 0.19 0.26 0.55
10 Apodemus uralensis Rodentia 434 6 0.04 3 0.17 0.19 0.26 0.55
11 Arvicola sapidus Rodentia 400 21 0.45 44 0.19 0.49 0.39 0.61
12 Atelerix algirus Insectivora 214 35 0.45 44 0.08 0.14 0.17 0.47
13 Barbastella barbastellus Bats 1491 98 0.96 92 0.52 0.83 0.71 0.79 +++

14 Canis aureus Carnivora 538 15 0.03 2 0.2 0.52 0.42 0.6
15 Canis lupus Carnivora 878 14 0.03 2 0.2 0.52 0.42 0.6
16 Capra ibex Artiodactyla 22 17 0.27 26 0.37 0.04 0.33 0.56
17 Capra pyrenaica Artiodactyla 20 16 0.27 26 0.37 0.04 0.33 0.56
18 Capreolus capreolus Artiodactyla 2377 2 0.7 67 0.1 0.27 0.22 0.52
19 Castor fiber Rodentia 586 1 0.7 67 0.25 0.31 0.38 0.62
20 Cervus elaphus Artiodactyla 1789 29 0.45 44 0.62 0.87 0.77 0.82
21 Chionomys nivalis Rodentia 232 11 0.45 44 0.19 0.49 0.39 0.61
22 Cricetulus migratorius Rodentia 183 23 0.18 17 0.21 0.22 0.21 0.47
23 Cricetus cricetus Rodentia 529 22 0.18 17 0.21 0.22 0.21 0.47
24 Crocidura leucodon Insectivora 1125 25 0.12 11 0.16 0.25 0.25 0.51
25 Crocidura russula Insectivora 811 24 0.12 11 0.16 0.25 0.25 0.51
26 Crocidura sicula Insectivora 20 24 0.08 7 0.39 0.02 0.41 0.61
27 Crocidura suaveolens Insectivora 1355 24 0.08 7 0.25 0.02 0.29 0.55
28 Crocidura zimmermanni Insectivora 11 24 0.08 7 0.39 0.74 0.6 0.72
29 Dama dama Artiodactyla 1822 20 0.45 44 0.62 0.87 0.77 0.82
30 Dinaromys bogdanovi Rodentia 36 11 0.45 44 0.19 0.15 0.25 0.51
31 Dryomys nitedula Rodentia 689 32 0.06 6 0.15 0.18 0.18 0.47
32 Eliomys quercinus Rodentia 961 31 0.06 6 0.15 0.18 0.18 0.47 –

33 Eptesicus bottae Bats 19 34 0.04 4 0.56 0.82 0.74 0.82
34 Eptesicus serotinus Bats 1997 33 0.04 4 0.56 0.82 0.74 0.82 +++

35 Erinaceus concolor Insectivora 107 36 0.06 6 0.3 0.2 0.4 0.6
36 Erinaceus europaeus Insectivora 1657 35 0.06 6 0.3 0.2 0.4 0.6
37 Felis chaus Carnivora 15 38 0.06 6 0.35 0.58 0.52 0.7
38 Felis silvestris Carnivora 871 37 0.06 6 0.35 0.58 0.52 0.7
39 Galemys pyrenaicus Insectivora 80 131 0.96 92 0.36 0.08 0.17 0.46
40 Genetta genetta Carnivora 559 42 0.78 75 0.25 0.19 0.18 0.48
41 Gulo gulo Carnivora 270 54 0.91 87 0.03 0.03 0.04 0.38
42 Herpestes ichneumon Carnivora 271 40 0.78 75 0.25 0.19 0.18 0.48
43 Hystrix cristata Rodentia 199 1 0.83 80 0.18 0.13 0.27 0.54
44 Lemmus lemmus Rodentia 307 81 0.96 92 0.09 0.21 0.25 0.53
45 Lepus capensis Lagomorpha 208 46 0.04 3 0.08 0.04 0.1 0.41
46 Lepus corsicanus Lagomorpha 48 47 0.37 35 0.12 0.03 0.1 0.42
47 Lepus europaeus Lagomorpha 2068 46 0.03 3 0.1 0.11 0.17 0.46
48 Lepus granatensis Lagomorpha 233 46 0.03 3 0.1 0.11 0.17 0.46
49 Lepus timidus Lagomorpha 964 46 0.37 35 0.22 0 0.01 0.32
50 Lutra lutra Carnivora 2709 77 0.96 92 0.61 0.88 0.78 0.82
51 Lynx lynx Carnivora 780 52 0.33 32 0.28 0.04 0.13 0.44
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nr name group N sister cophenetic nodeage NO Horn D-index I-index trend 

52 Lynx pardinus Carnivora 30 51 0.33 32 0.28 0.04 0.13 0.44
53 Marmota marmota Rodentia 79 126 0.96 92 0.41 0.07 0.27 0.53
54 Martes foina Carnivora 1791 55 0.03 3 0.61 0.82 0.76 0.78
55 Martes martes Carnivora 2222 54 0.03 3 0.61 0.82 0.76 0.78
56 Meles meles Carnivora 2563 77 0.96 92 0.61 0.88 0.78 0.82
57 Meriones tristrami Rodentia 45 1 0.91 87 0.66 0.69 0.75 0.84
58 Mesocricetus newtoni Rodentia 16 22 0.91 87 0.09 0.12 0.16 0.47
59 Micromys minutus Rodentia 1674 1 0.96 92 0.54 0.84 0.72 0.8
60 Microtus agrestis Rodentia 1884 62 0.13 13 0.28 0.09 0.31 0.58
61 Microtus arvalis Rodentia 1386 66 0.25 24 0.09 0.08 0.08 0.4
62 Microtus cabrerae Rodentia 47 60 0.13 13 0.28 0.09 0.31 0.58
63 Microtus duodecimcostatus Rodentia 235 67 0.15 15 0.37 0.19 0.22 0.49
64 Microtus felteni Rodentia 17 65 0.15 15 0.19 0.16 0.27 0.56
65 Microtus gerbei Rodentia 84 64 0.15 15 0.19 0.16 0.27 0.56
66 Microtus guentheri Rodentia 138 61 0.25 24 0.09 0.08 0.08 0.4
67 Microtus lusitanicus Rodentia 114 63 0.15 15 0.37 0.19 0.22 0.49
68 Microtus multiplex Rodentia 55 63 0.86 83 0.28 0.01 0.05 0.36
69 Microtus oeconomus Rodentia 608 60 0.08 7 0.21 0.16 0.27 0.55
70 Microtus savii Rodentia 130 64 0.86 83 0.15 0.28 0.29 0.55
71 Microtus subterraneus Rodentia 960 63 0.86 83 0.2 0.03 0.06 0.37
72 Microtus thomasi Rodentia 60 63 0.08 7 0.16 0.32 0.31 0.56
73 Mus macedonicus Rodentia 218 74 0.07 6 0.2 0.18 0.19 0.47
74 Mus spicilegus Rodentia 223 73 0.13 12 0.1 0.09 0.13 0.43
75 Mus spretus Rodentia 387 73 0.13 12 0.14 0.03 0.07 0.36
76 Muscardinus avellanarius Rodentia 1378 31 0.96 92 0.27 0.59 0.47 0.65
77 Mustela erminea Carnivora 2054 79 0.48 46 0.61 0.88 0.78 0.82
78 Mustela lutreola Carnivora 92 80 0.55 53 0.45 0.13 0.54 0.71
79 Mustela nivalis Carnivora 2799 77 0.48 46 0.61 0.88 0.78 0.82
80 Mustela putorius Carnivora 1953 78 0.55 53 0.45 0.13 0.54 0.71
81 Myopus schisticolor Rodentia 271 44 0.96 92 0.09 0.21 0.25 0.53
82 Myotis blythii Bats 1056 85 0.62 59 0.44 0.87 0.74 0.78 +++

83 Myotis capaccinii Bats 520 82 0.02 2 0.4 0.62 0.57 0.73 +++

84 Myotis emarginatus Bats 1244 82 0.11 10 0.38 0.68 0.59 0.67 +++

85 Myotis myotis Bats 1540 82 0 0 1 1 1 1 +++

86 Myotis mystacinus Bats 1589 82 0.11 10 0.38 0.68 0.59 0.67 +++

87 Myotis nattereri Bats 2160 82 0.62 59 0.24 0.42 0.41 0.63 ++

88 Neomys anomalus Insectivora 1312 89 0.34 33 0.5 0.76 0.68 0.73
89 Neomys fodiens Insectivora 2205 88 0.34 33 0.5 0.76 0.68 0.73
90 Nyctalus lasiopterus Bats 618 91 0.03 3 0.45 0.67 0.6 0.74 ++

91 Nyctalus leisleri Bats 1712 90 0.03 3 0.64 0.88 0.81 0.82 +++

92 Nyctalus noctula Bats 1811 90 0.03 3 0.38 0.6 0.54 0.71 +++

93 Oryctolagus cuniculus Lagomorpha 1427 45 0.96 92 0.08 0.01 0.05 0.37
94 Ovis aries Artiodactyla 676 16 0.96 92 0.2 0.21 0.28 0.55
95 Pipistrellus kuhlii Bats 1054 96 0.53 51 0.34 0.71 0.59 0.68 +++

96 Pipistrellus nathusii Bats 1818 97 0.23 22 0.68 0.92 0.83 0.86 ++

97 Pipistrellus pipistrellus Bats 2198 96 0.23 22 0.68 0.92 0.83 0.86 ++

98 Plecotus auritus Bats 2085 99 0.03 3 0.52 0.83 0.71 0.79
99 Plecotus austriacus Bats 1328 98 0.03 3 0.52 0.83 0.71 0.79 +++

100 Pteromys volans Rodentia 210 109 0.23 22 0.12 0.01 0.09 0.41
101 Rangifer tarandus Artiodactyla 61 2 0.96 92 0.3 0.52 0.44 0.61
102 Rattus rattus Rodentia 1866 1 0.96 92 0.42 0.78 0.64 0.73 ––

103 Rhinolophus blasii Bats 325 104 0.17 16 0.26 0.21 0.3 0.57
104 Rhinolophus euryale Bats 1030 107 0.23 22 0.31 0.45 0.41 0.64 +++

105 Rhinolophus ferrumequinum Bats 1351 104 0.11 11 0.41 0.83 0.71 0.76 +++
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nr name group N sister cophenetic nodeage NO Horn D-index I-index trend 

106 Rhinolophus hipposideros Bats 1606 104 0.23 22 0.3 0.24 0.33 0.59 +++

107 Rhinolophus mehelyi Bats 401 104 0.05 4 0.3 0.37 0.37 0.61 +

108 Rupicapra rupicapra Artiodactyla 62 16 0.96 92 0.62 0.47 0.61 0.76
109 Sciurus anomalus Rodentia 99 110 0.08 8 0.53 0.47 0.63 0.75
110 Sciurus vulgaris Rodentia 2300 109 0.08 8 0.53 0.47 0.63 0.75
111 Sicista betulina Rodentia 534 112 0.88 85 0.16 0.1 0.2 0.5
112 Sicista severtzovi Rodentia 33 111 0.09 9 0.03 0.66 0.4 0.58
113 Sicista strandi Rodentia 12 111 0.09 9 0.03 0.66 0.4 0.58
114 Sicista subtilis Rodentia 41 111 0.88 85 0.16 0.1 0.2 0.5
115 Sorex alpinus Insectivora 196 116 0.26 25 0.37 0.64 0.57 0.73
116 Sorex araneus Insectivora 1879 119 0.26 25 0.13 0.01 0.07 0.38
117 Sorex caecutiens Insectivora 404 120 0.37 36 0.19 0.13 0.26 0.53
118 Sorex coronatus Insectivora 377 116 0.26 25 0.24 0.26 0.32 0.57
119 Sorex granarius Insectivora 38 116 0.26 25 0.13 0.01 0.07 0.38
120 Sorex isodon Insectivora 156 117 0.37 36 0.19 0.13 0.26 0.53
121 Sorex minutissimus Insectivora 266 122 0.03 3 0.06 0.12 0.14 0.45
122 Sorex minutus Insectivora 2387 121 0.03 3 0.06 0.12 0.14 0.45
123 Sorex samniticus Insectivora 87 116 0.81 78 0.12 0.21 0.23 0.5
124 Spalax graecus Rodentia 20 125 0.08 8 0.03 0.12 0.1 0.42
125 Spalax zemni Rodentia 50 124 0.08 8 0.03 0.12 0.1 0.42
126 Spermophilus citellus Rodentia 188 127 0.08 8 0.31 0.11 0.25 0.52
127 Spermophilus suslicus Rodentia 73 126 0.08 8 0.31 0.11 0.25 0.52
128 Suncus etruscus Insectivora 666 24 0.96 92 0.29 0.53 0.46 0.61
129 Sus scrofa Artiodactyla 2075 2 0.96 92 0.06 0.12 0.12 0.43 +

130 Tadarida teniotis Bats 673 13 0.96 92 0.23 0.48 0.4 0.6 ++

131 Talpa caeca Insectivora 117 132 0.13 12 0.24 0.3 0.33 0.58
132 Talpa europaea Insectivora 1777 131 0.13 12 0.1 0.16 0.18 0.46
133 Talpa levantis Insectivora 59 131 0.04 3 0.33 0.03 0.08 0.4
134 Talpa occidentalis Insectivora 130 131 0.04 3 0.33 0.03 0.08 0.4
135 Talpa romana Insectivora 57 131 0.13 12 0.1 0.16 0.18 0.46
136 Talpa stankovici Insectivora 14 131 0.13 12 0.24 0.3 0.33 0.58
137 Ursus arctos Carnivora 605 41 0.96 92 0.1 0.36 0.3 0.53
138 Vespertilio murinus Bats 1298 13 0.96 92 0.26 0.54 0.44 0.61
139 Vormela peregusna Carnivora 134 77 0.88 85 0.16 0.04 0.16 0.46
140 Vulpes vulpes Carnivora 2879 4 0.96 92 0.06 0.04 0.08 0.43
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