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Spatially and temporally consistent prediction of
heavy precipitation frommean values
R. E. Benestad1*, D. Nychka2 and L. O. Mearns2

Extreme precipitation can cause flooding, result in substantial
damages and have detrimental effects on ecosystems1,2.
Climate adaptation must therefore account for the greatest
precipitation amounts that may be expected over a certain
time span3. The recurrence of extreme-to-heavy precipitation
is notoriously hard to predict, yet cost–benefit estimates
of mitigation and successful climate adaptation will need
reliable information about percentiles for daily precipitation.
Here we present a new and simple formula that relates
wet-day mean precipitation to heavy precipitation, providing
a method for predicting and downscaling daily precipitation
statistics. We examined 32,857 daily rain-gauge records
from around the world and the evaluation of the method
demonstrated that wet-day precipitation percentiles can be
predicted with high accuracy. Evaluations against independent
data demonstrated high skill in both space and time, indicating
a highly robust methodology.

Traditionally, design values, used for dimensioning infrastruc-
ture or specifying insurance premiums, have been estimated from
statistics such as extreme-value theory or percentiles. Such statistical
analyses usually assume that the statistical distribution is constant,
but this assumption breaks down if there is a climate change where
the statistical character of rainfall is non-stationary. Some extreme-
value methods, however, can also account for non-stationary statis-
tics, but the parameters used to fit the extreme-value distributions
(scale, shape and location) often do not have a clear connection
to physical processes. Such methods are also based on a number
of subjective choices, such as between peak-over-threshold or
block maxima4, and are difficult to incorporate into a downscaling
framework accounting for climatic changes.

Previous downscaling efforts for extreme events have
often focused on certain extreme indices5,6, extreme-value
distributions7,8, or involved attempts to directly downscale the
entire 24-h precipitation probability distribution9. Regional climate
models (RCMs) have also been used to predict heavy precipitation
and changes in such precipitation7, however, they do not provide
the same kind of description of the precipitation as observed as they
describe an area mean as opposed to point measurements. It is also
important to keep in mind that models in principle are idealistic
simplifications and are designed to describe the most essential
features of the climate, not all the small details. The description of
cloudmicrophysics in RCMs is still limited in terms of representing
small-scale processes that are suspected to take place10. Evaluations
of someRCMs have also indicated that they are not able to provide a
realistic description of the higher quantiles11 and that they produce
drizzle conditions too frequently12. Hence, adequate modelling of
precipitation statistics has been a long-standing problem.
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Figure 1 |Map showing the locations of the 33,599 original rain gauges on
which the analysis was based. The results of the study are representative
for a large part of the world, but there are also some regions for which there
were no available data (the world oceans, Africa, the Middle East, Oceania
and part of Latin America). The colour coding shows the mean
precipitation (mm d−1) for the season June–September.

Recently, there have been some new approaches for describing
extreme precipitation, some of which have involved principal
component analysis (PCA)13. Other efforts have tried to make use
of the similarity between precipitation and exponential distribution
for wet days to provide a crude approximation of the upper
percentiles9,14. The advantage of these new approaches is that they
can be more easily used in downscaling of global climate models.
We extended these earlier efforts by combining them to provide
an accurate description of the wet-day percentiles. The PCA can
then be used together with regression analyses to predict percentiles
for the daily wet-day precipitation over most of the Earth. This
strategy transforms the data to reveal a robust and simple formula
that directly links the wet-day percentiles to the wet-day mean
precipitation (see Methods).

We examined 32,857 time series of daily precipitation from
all over the world, taken from the Global Daily Climatology
Network15,16 and European Climate Assessment &Dataset project17
data sets, as well as theNorwegianMeteorological Institute’s climate
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Figure 2 |Maps of wet-day 95th percentile for 24-h precipitation a, The
map shows the raw wet-day q0.95 as extracted from the Global Daily
Climatology Network rain-gauge data. Here q0.95 was estimated for each
respective location, based on the months of June–September for the entire
record. The map was then generated by gridding q0.95 for each location,
using the R-package LatticeKrig (see Supplementary Information) and z as
a covariate. The grid resolution is 0.65◦ longitude by 0.45◦ latitude. b, As
in a, but showing predicted wet-day q0.95 values based on µ, fw, z and d.
These predictions involved both a regression analysis and a PCA applied to
a range of quantiles as explained in the text and ref. 13. The correlation
between predicted and observed values are presented in Fig. 3 as a scatter
plot of red symbols.

archive18. The location of the rain gauges are shown in Fig. 1; the
colour coding refers to each location’s mean precipitation. Stations
with fewer than 1,000 wet-day amounts were discarded, keeping
14,022 stations from North America and 14,003 stations from
the rest of the world. Here the threshold for defining a wet day
was taken to amounts exceeding 1mmd−1 and the mean wet-day
value is represented by µ.

Percentiles are here represented by qp and are used to describe
the value that is greater than the p portion of the sampled data.
They also describe the amount that can be associated with a
probability: P(X > qp) = 1− p. We will distinguish between the
statistics estimated only for the days with precipitation (wet days)
and the statistics describing both dry and wet days.

For downscaling purposes, wewanted to explore the relationship
between the two leading principal components and local condi-
tions. We expected that µ may be one important factor, as any
percentile in an exponential distribution is entirely specified by
µ. We also suspected that the wet-day frequency (fw), distance
to the coast (d) and elevation (z) may be factors that affect the
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Figure 3 | Scatter plot providing an evaluation of the predicted wet-day
q0.95 values for dependent data from North America presented in Fig. 2
(red) and independent data representing rain gauges outside North
America (blue). The predictions are shown along the x axis and the
observations along the y axis.

precipitation characteristics. An ordinary linear regression was
carried out on the two leading principal components describing the
precipitation data from North America. Predictions of q0.95 were
then made by first multiplying the regression coefficients with µ,
fw, d , and z to estimate the two leading principal components, and
then using these principal components together with the empirical
orthogonal functions (EOFs) and eigenvalues to reconstruct the
percentiles. The predictions based on µ, fw, d and z are shown in
Fig. 2b, which reproduce most of the features seen in the original
observations (Fig. 2a; the correlation is presented as the red symbols
in Fig. 3). For this comparison, the model is evaluated on the
same data set as that used to train the method; in other words,
a dependent data set.

To test how well this regression model was able to predict
values for out-of-sample data, we repeated the PCA, but now
applied to the data set for the whole world (the reason for
this is explained in the Supplementary Information). The part
of the principal components that represented North American
locations were subsequently extracted and used to calibrate the
regression model (referred to as dependent data). The remaining
part of the principal components was not used in the regression
analysis, but as independent data for evaluation purposes. Figure 3
shows a scatter plot for the predicted values of q0.95 versus
the observed values both for the set of dependent (red; also
shown in Fig. 2) and independent data (blue). The correlation
between the predicted and observed independent data was 0.93
and the likelihood that this result should arise from chance
was virtually zero (the size of the data set, N = 14,003). The
evaluation against the independent data was extended by dividing
the rain-gauge data from North America into two equally sized
batches, where the PCA and model calibration were carried out
on data from one, and the evaluation was based on data from
the other (5,640 stations). The correlation between predicted and
observed values for q0.95 from this out-of-batch evaluation was
0.95. More details and maps of the observed and predicted values
of q0.95 for regions outside North America are provided in the
Supplementary Information.

If this relationship is to be used for downscaling percentiles in
a climate-change scenario, it is also important to assess whether
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Figure 4 |A comparison between predicted (line) and observed (symbols)
wet-day q0.95 time series for the longest record of 24-h precipitation in
the United States (station number 305801). The correlation between
observed and predicted values is 0.95, with a 5–95% confidence range of
0.90–0.98. The regression model is the same as presented in Fig. 3 (red
symbols) and was calibrated with 14,022 different rain-gauge records from
North America. These results show that models calibrated with spatial
variability also produce skillful predictions for the time dimension.

the relationship between the predictor and the predictand holds in
time as well as in space. We picked the longest precipitation record
from the United States and divided it into five-year sequences. For
each sequence, we estimated µ, fw and q0.95. The values for d and
z were constant and determined from the station’s metadata. We
multiplied these four parameters with the regression coefficients
derived from the geographic distribution in µ, fw, d and z from
14,003North American rain gauges to predict local time-dependent
values for the two leading principal components. The predicted
principal component values were then used to reconstruct a time
series of q0.95. The actual percentiles are shown as symbols in Fig. 4,
the predictions are shown as a black curve and the correlation
between the two is 0.95. As the percentiles are only sampled
from relatively short five-year intervals, some discrepancies may be
expected owing to sampling fluctuations.

To see if the case presented in Fig. 4 was a special one,
we repeated the procedure for all the North American rain
data (11,281 stations), and compared the distribution of the
correlation coefficients with similar analysis applied to random
series. The mean correlation for the North American stations
was 0.8, whereas for the random series it was 0.0 (see the
Supplementary Information). We also carried out some simple
sensitivity tests of our model and the results indicate that the
percentiles are most sensitive to variations in µ, whereas the other
three covariates induce only a secondary effect (Supplementary
Information, Supplementary Fig. S10). The leading EOF has a shape
that closely follows the diagonal in a quantile–quantile plot with the
different axes representing q0.95 and q′0.95 respectively

14; any scaling
of the leading EOF, such as different leading principal component
values, will have an effect of sliding the curve up or down along
the diagonal. As the x axis represents q′p=−ln(1−p)µ, µmust be
closely linked to the leading principal component.

We have presented evidence for a close relationship between
µ and qp, which becomes apparent only when excluding non-
rainy days, using the exponential distribution as a guide, and

transforming the data through a PCA. This relationship is valid in
both space and time, and can be used to facilitate downscaling of
daily precipitation statistics. The Supplementary Information pro-
vides a crude demonstration of how the exponential distribution,
PCA, andµ can be used for downscaling (Supplementary Fig. S13).
The results here also show that the key variables to simulate well
for hydrological studies are µ and fw. The projection of future
precipitation statistics will require proper treatment of multimodel
ensembles and Bayesian statistics, and is beyond the scope of this
paper. Nevertheless, most global climate models predict wetter
conditions over the mid-latitudes and parts of the tropics19,20,
and if this increase is reflected in the µ, as in the example in
the Supplementary Information, then we can expect to see more
extreme precipitation amounts in the future.

One question that has not been addressed is which physical
processes may be linking µ to qp and result in a distribution
resembling an exponential with an increasing bias for higher
percentiles. The rainfall statistics are a product of complex
processes taking place on small spatial scales, involving rising air
parcels, turbulent motion, entrainment, humidity, cold and warm
initiation, and cloud-particle growth through condensation as
well as collision and coalescence21. Furthermore, the precipitation
amount at a given point depends on both the spatial extent and the
speed of the system passing through. An interesting question, albeit
beyond the scope of this paper, is whether the link between µ and
qp can be explained in terms of cloud environment, humidity, or
microphysics, which most likely involves stochastic behaviour and
cascading avalanches.

The link between µ and qp also provides a number of useful
applications for climate research. For instance, the formula can
facilitate an effective compression of statistical information, as
µ and the PCA results provide a complete description of the
percentiles. Another aspect is that the formula can serve as a
quality control to flag suspect data as most stations exhibit similar
structures. It is also possible that it may benefit attribution analyses,
when extreme rainfall may be associated with increases inµ. Owing
to sampling fluctuations, it is easier to find long-term trends in µ
than in higher percentiles, but given a direct link between the two,
we can deduce an increased probability of extreme rainfall with
increasing values of µ.

Methods
For each station, we extracted µ and 14 wet-day qp values (estimated from the
entire data record and taking p to be in (0.50, 0.99)), as well as keeping track of the
number of wet and dry days, the location coordinates and z . The qp values were
combined into a vector with corresponding percentiles assuming an exponential
distribution with the same value of µ. The latter are represented here by the
symbol q′p =−ln(1−p)µ to distinguish them from the actual percentiles qp. The
relationship between the two types of percentiles is close to being one-to-one and a
structure that follows the diagonal, albeit with a positive bias at higher values that
becomes apparent when plotted in a scatter plot with qp along the y axis and the
corresponding q′p on the x axis (see Supplementary Fig. S1 and ref. 14).

Then the 14 percentiles from all rain-gauge locations, stored in one vector
for each site containing both qp and q′p, were combined into a data matrix for
which the vectors made up the columns. This data matrix was subsequently subject
to a PCA as in ref. 14. Here the PCA was implemented using a singular value
decomposition that transformed the original data matrix into three components:
EOFs, principal components and eigenvalues. The principal components represent
the weight at each location that must be applied to the EOFs and eigenvalues to
reconstruct any of the 14 quantiles. A detailed description of the PCA is provided
in the Supplementary Information.

One advantage of this technique is that it provides a transform of the data
by adding a perturbation to the exponential distribution. The leading EOF
was by far the most important contribution (99% of variance) over North
America, the second mode accounted for ∼0.5% and the higher-order ones
can be considered as noise. Hence we retained only the two leading EOFs for
reconstructing the percentiles.

A regression analysis was carried out to predict the values for the two leading
principal components based on µ, fw, d and z . The predicted principal component
values were then used together with the EOFs and the eigenvalues to derive the
quantiles. Although the PCA spanned a range of quantiles between q0.50 and
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q0.99, the present analysis highlights q0.95 for precipitation because this quantity
is commonly discussed in the literature on precipitation and q0.99 implies greater
random-sampling fluctuations and more noisy results14. A state-of-the art tool,
using a kriging algorithm that takes the altitude as one covariate, was used to grid
the observed wet-day 95th percentile q0.95 for precipitation over North America in
Fig. 2a (see Supplementary Information).
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